Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Feb 1;289(Pt 3):647–652. doi: 10.1042/bj2890647

Anionic charge concentration of rat kidney glomeruli and glomerular basement membrane.

W D Comper 1, A S Lee 1, M Tay 1, Y Adal 1
PMCID: PMC1132224  PMID: 8435064

Abstract

Estimates of levels of glomerular and glomerular-basement-membrane anion charge should serve as useful quantitative markers for the integrity of the tissues in health and disease. We have developed a simple, rapid, technique to measure this charge through the use of ion exchange with radioisotopes 22Na+ and 36Cl- at low ionic strengths in phosphate buffer. When this technique is used, normal glomeruli isolated from rat have a measured net anion charge concentration of 17.4 +/- 3.7 p-equiv. per glomerulus (n = 20). Perfused rat kidneys that lose approximately half of their glomerular heparan [35S]sulphate content (owing to oxygen-radical damage) exhibited a lower anion charge, of 7.5 +/- 1.6 p-equiv. per glomerulus (n = 5). Glomerular basement membranes prepared from rat glomeruli by a sonication-centrifugation procedure in the presence of enzyme inhibitors had a charge concentration of 6.3 +/- 0.7 mu-equiv./g wet wt. of tissue (n = 4), whereas membranes prepared by sonication, centrifugation, DNAse and detergent treatment had a charge concentration of 7.1 +/- 1.6 mu-equiv./g wet wt. (n = 4). Isotope-dilution experiments with 3H2O on these detergent-prepared glomerular basement membranes demonstrated that they had a water content of approx. 93%, which would then give a net anion charge concentration of 7.6 +/- 1.7 m-equiv./l (n = 4). These values are in good agreement with those obtained by others using titration techniques [Bray and Robinson (1984) Kidney Int. 25, 527-533]. The relatively low magnitude of glomerular anion charge in normal kidneys is consistent with other recent findings that glomerular anion charge is too low to affect the glomerular transport of charged molecules in a direct, passive, biophysical manner through electrostatic interactions.

Full text

PDF
647

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beavan L. A., Davies M., Mason R. M. Renal glomerular proteoglycans. An investigation of their synthesis in vivo using a technique for fixation in situ. Biochem J. 1988 Apr 15;251(2):411–418. doi: 10.1042/bj2510411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett C. M., Glassock R. J., Chang R. L., Deen W. M., Robertson C. R., Brenner B. M., Troy J. L., ueki I. R., Rasmussen B. Permselectivity of the glomerular capillary wall. Studies of experimental glomerulonephritis in the rat using dextran sulfate. J Clin Invest. 1976 May;57(5):1287–1294. doi: 10.1172/JCI108396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bertolatus J. A., Klinzman D. Macromolecular sieving by glomerular basement membrane in vitro: effect of polycation or biochemical modifications. Microvasc Res. 1991 May;41(3):311–327. doi: 10.1016/0026-2862(91)90031-6. [DOI] [PubMed] [Google Scholar]
  4. Bohrer M. P., Baylis C., Humes H. D., Glassock R. J., Robertson C. R., Brenner B. M. Permselectivity of the glomerular capillary wall. Facilitated filtration of circulating polycations. J Clin Invest. 1978 Jan;61(1):72–78. doi: 10.1172/JCI108927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bray J., Robinson G. B. Influence of charge on filtration across renal basement membrane films in vitro. Kidney Int. 1984 Mar;25(3):527–533. doi: 10.1038/ki.1984.49. [DOI] [PubMed] [Google Scholar]
  6. Caulfield J. P., Farquhar M. G. Distribution of annionic sites in glomerular basement membranes: their possible role in filtration and attachment. Proc Natl Acad Sci U S A. 1976 May;73(5):1646–1650. doi: 10.1073/pnas.73.5.1646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chang R. L., Deen W. M., Robertson C. R., Brenner B. M. Permselectivity of the glomerular capillary wall: III. Restricted transport of polyanions. Kidney Int. 1975 Oct;8(4):212–218. doi: 10.1038/ki.1975.104. [DOI] [PubMed] [Google Scholar]
  8. Chang R. L., Ueki I. F., Troy J. L., Deen W. M., Robertson C. R., Brenner B. M. Permselectivity of the glomerular capillary wall to macromolecules. II. Experimental studies in rats using neutral dextran. Biophys J. 1975 Sep;15(9):887–906. doi: 10.1016/S0006-3495(75)85863-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Comper W. D., Preston B. N. Model connective-tissue systems. A study of polyion-mobile ion and of excluded-volume interactions of proteoglycans. Biochem J. 1974 Oct;143(1):1–9. doi: 10.1042/bj1430001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deen W. M., Satvat B., Jamieson J. M. Theoretical model for glomerular filtration of charged solutes. Am J Physiol. 1980 Feb;238(2):F126–F139. doi: 10.1152/ajprenal.1980.238.2.F126. [DOI] [PubMed] [Google Scholar]
  11. Fox B. W. The application of Triton X 100 colloid scintillation counting in biochemistry. Int J Appl Radiat Isot. 1968 Oct;19(10):717–730. doi: 10.1016/0020-708x(68)90109-9. [DOI] [PubMed] [Google Scholar]
  12. Kanwar Y. S. Biophysiology of glomerular filtration and proteinuria. Lab Invest. 1984 Jul;51(1):7–21. [PubMed] [Google Scholar]
  13. Kanwar Y. S., Farquhar M. G. Anionic sites in the glomerular basement membrane. In vivo and in vitro localization to the laminae rarae by cationic probes. J Cell Biol. 1979 Apr;81(1):137–153. doi: 10.1083/jcb.81.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kanwar Y. S., Farquhar M. G. Isolation of glycosaminoglycans (heparan sulfate) from glomerular basement membranes. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4493–4497. doi: 10.1073/pnas.76.9.4493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kanwar Y. S., Jakubowski M. L., Rosenzweig L. J. Distribution of sulfated glycosaminoglycans in the glomerular basement membrane and mesangial matrix. Eur J Cell Biol. 1983 Sep;31(2):290–295. [PubMed] [Google Scholar]
  16. Kanwar Y. S., Linker A., Farquhar M. G. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J Cell Biol. 1980 Aug;86(2):688–693. doi: 10.1083/jcb.86.2.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kim Y. J., Sah R. L., Doong J. Y., Grodzinsky A. J. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem. 1988 Oct;174(1):168–176. doi: 10.1016/0003-2697(88)90532-5. [DOI] [PubMed] [Google Scholar]
  18. Kobayashi S., Nagase M., Honda N., Adachi K., Ichinose N., Hishida A. Analysis of anionic charge of the glomerular basement membrane in aminonucleoside nephrosis. Kidney Int. 1989 Jun;35(6):1405–1408. doi: 10.1038/ki.1989.140. [DOI] [PubMed] [Google Scholar]
  19. Maroudas A., Thomas H. A simple physicochemical micromethod for determining fixed anionic groups in connective tissue. Biochim Biophys Acta. 1970 Jul 21;215(1):214–216. [PubMed] [Google Scholar]
  20. Meezan E., Hjelle J. T., Brendel K., Carlson E. C. A simple, versatile, nondisruptive method for the isolation of morphologically and chemically pure basement membranes from several tissues. Life Sci. 1975 Dec 1;17(11):1721–1732. doi: 10.1016/0024-3205(75)90119-8. [DOI] [PubMed] [Google Scholar]
  21. Parthasarathy N., Spiro R. G. Effect of diabetes on the glycosaminoglycan component of the human glomerular basement membrane. Diabetes. 1982 Aug;31(8 Pt 1):738–741. doi: 10.2337/diab.31.8.738. [DOI] [PubMed] [Google Scholar]
  22. Rennke H. G., Cotran R. S., Venkatachalam M. A. Role of molecular charge in glomerular permeability. Tracer studies with cationized ferritins. J Cell Biol. 1975 Dec;67(3):638–646. doi: 10.1083/jcb.67.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rennke H. G., Venkatachalam M. A. Glomerular permeability: in vivo tracer studies with polyanionic and polycationic ferritins. Kidney Int. 1977 Jan;11(1):44–53. doi: 10.1038/ki.1977.6. [DOI] [PubMed] [Google Scholar]
  24. Robinson G. B., Walton H. A. Glomerular basement membrane as a compressible ultrafilter. Microvasc Res. 1989 Jul;38(1):36–48. doi: 10.1016/0026-2862(89)90015-0. [DOI] [PubMed] [Google Scholar]
  25. Seiler M. W., Venkatachalam M. A., Cotran R. S. Glomerular epithelium: structural alterations induced by polycations. Science. 1975 Aug 1;189(4200):390–393. doi: 10.1126/science.1145209. [DOI] [PubMed] [Google Scholar]
  26. Spiro R. G. Studies on the renal glomerular basement membrane. Preparation and chemical composition. J Biol Chem. 1967 Apr 25;242(8):1915–1922. [PubMed] [Google Scholar]
  27. Stow J. L., Sawada H., Farquhar M. G. Basement membrane heparan sulfate proteoglycans are concentrated in the laminae rarae and in podocytes of the rat renal glomerulus. Proc Natl Acad Sci U S A. 1985 May;82(10):3296–3300. doi: 10.1073/pnas.82.10.3296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tay M., Comper W. D., Singh A. K. Charge selectivity in kidney ultrafiltration is associated with glomerular uptake of transport probes. Am J Physiol. 1991 Apr;260(4 Pt 2):F549–F554. doi: 10.1152/ajprenal.1991.260.4.F549. [DOI] [PubMed] [Google Scholar]
  29. Tay M., Comper W. D., Vassiliou P., Glasgow E. F., Baker M. S., Pratt L. The inhibitory action of oxygen radical scavengers on proteinuria and glomerular heparan sulphate loss in the isolated perfused kidney. Biochem Int. 1990;20(4):767–778. [PubMed] [Google Scholar]
  30. Vassiliou P., Tay M., Comper W. D. Partial ischemia and proteinuria during isolated kidney perfusion is accompanied by the release of vascular [35S]heparan sulfate. Biochem Int. 1989 Dec;19(6):1241–1251. [PubMed] [Google Scholar]
  31. Wolgast M., Ojteg G. Electrophysiology of renal capillary membranes: gel concept applied and Starling model challenged. Am J Physiol. 1988 Mar;254(3 Pt 2):F364–F373. doi: 10.1152/ajprenal.1988.254.3.F364. [DOI] [PubMed] [Google Scholar]
  32. Zamparo O., Comper W. D. Model anionic polysaccharide matrices exhibit lower charge selectivity than is normally associated with kidney ultrafiltration. Biophys Chem. 1990 Oct;38(1-2):167–178. doi: 10.1016/0301-4622(90)80052-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES