Abstract
Bovine aortic endothelial cells contain Ca2+-dependent tissue-type transglutaminase. Its activity in these cells was high, with apparent Km and Vmax. values with respect to putrescine of 0.203 mM and 18.5 nmol/min per mg of protein, and its activity was inhibited by the three competitive inhibitors dansylcadaverine, spermine and methylamine. The molecular mass of endothelial cell transglutaminase estimated by gel filtration chromatography was 88 kDa and it was immunoprecipitated by rabbit monospecific antiserum raised against rat liver transglutaminase. Its enzymic activity rose when the cell cultures reached confluence, and was further increased when their proliferation was arrested (synchronized at G0/G1 phase). Most of the enzymic activity was found in the 15,000 g soluble fraction, with only 4-22% of the activity found in the particulate fraction, depending on the state of cell proliferation. Examination of these cellular fractions by SDS/polyacrylamide-gel electrophoresis and immunoblotting revealed that at confluence endothelial cells have accumulated transglutaminase antigen in their 15,000 g particulate fraction. A series of experiments demonstrated the existence of a latent transglutaminase form in non-proliferating cells, and suggested that this might involve the formation of an inhibitory complex. Treatment of cell lysates and the 15,000 g particulate fraction with high salt concentration showed a significant increase in transglutaminase activity. Mixing experiments using the 100,000 g particulate fraction or purified rat liver transglutaminase on one hand and the cytosolic fraction on the other showed dose-dependent inhibition of the transglutaminase activity of the latter. It is concluded that endothelial cells contain a particulate fraction-residing inhibitor of transglutaminase which interacts via ionic interaction with the enzyme.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Achyuthan K. E., Greenberg C. S. Identification of a guanosine triphosphate-binding site on guinea pig liver transglutaminase. Role of GTP and calcium ions in modulating activity. J Biol Chem. 1987 Feb 5;262(4):1901–1906. [PubMed] [Google Scholar]
- Barnes R. N., Bungay P. J., Elliott B. M., Walton P. L., Griffin M. Alterations in the distribution and activity of transglutaminase during tumour growth and metastasis. Carcinogenesis. 1985 Mar;6(3):459–463. doi: 10.1093/carcin/6.3.459. [DOI] [PubMed] [Google Scholar]
- Birckbichler P. J., Carter H. A., Orr G. R., Conway E., Patterson M. K., Jr epsilon-(gamma-Glutamyl)lysine isopeptide bonds in normal and virus transformed human fibroblasts. Biochem Biophys Res Commun. 1978 Sep 14;84(1):232–237. doi: 10.1016/0006-291x(78)90287-5. [DOI] [PubMed] [Google Scholar]
- Birckbichler P. J., Orr G. R., Conway E., Patterson M. K., Jr Transglutaminase activity in normal and transformed cells. Cancer Res. 1977 May;37(5):1340–1344. [PubMed] [Google Scholar]
- Birckbichler P. J., Orr G. R., Patterson M. K., Jr, Conway E., Carter H. A. Increase in proliferative markers after inhibition of transglutaminase. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5005–5008. doi: 10.1073/pnas.78.8.5005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birckbichler P. J., Patterson M. K., Jr Cellular transglutaminase, growth, and transformation. Ann N Y Acad Sci. 1978 Jun 20;312:354–365. doi: 10.1111/j.1749-6632.1978.tb16813.x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Byrd J. C., Lichti U. Two types of transglutaminase in the PC12 pheochromocytoma cell line. Stimulation by sodium butyrate. J Biol Chem. 1987 Aug 25;262(24):11699–11705. [PubMed] [Google Scholar]
- Chang S. K., Chung S. I. Cellular transglutaminase. The particulate-associated transglutaminase from chondrosarcoma and liver: partial purification and characterization. J Biol Chem. 1986 Jun 25;261(18):8112–8121. [PubMed] [Google Scholar]
- Cocuzzi E. T., Chung S. I. Cellular transglutaminase. Lung matrix-associated transglutaminase: characterization and activation with sulfhydryls. J Biol Chem. 1986 Jun 25;261(18):8122–8127. [PubMed] [Google Scholar]
- Connellan J. M., Chung S. I., Whetzel N. K., Bradley L. M., Folk J. E. Structural properties of guinea pig liver transglutaminase. J Biol Chem. 1971 Feb 25;246(4):1093–1098. [PubMed] [Google Scholar]
- Davies P. J., Davies D. R., Levitzki A., Maxfield F. R., Milhaud P., Willingham M. C., Pastan I. H. Transglutaminase is essential in receptor-mediated endocytosis of alpha 2-macroglobulin and polypeptide hormones. Nature. 1980 Jan 10;283(5743):162–167. doi: 10.1038/283162a0. [DOI] [PubMed] [Google Scholar]
- Davies P. J., Murtaugh M. P., Moore W. T., Jr, Johnson G. S., Lucas D. Retinoic acid-induced expression of tissue transglutaminase in human promyelocytic leukemia (HL-60) cells. J Biol Chem. 1985 Apr 25;260(8):5166–5174. [PubMed] [Google Scholar]
- Folk J. E., Chung S. I. Molecular and catalytic properties of transglutaminases. Adv Enzymol Relat Areas Mol Biol. 1973;38:109–191. doi: 10.1002/9780470122839.ch3. [DOI] [PubMed] [Google Scholar]
- Folk J. E., Finlayson J. S. The epsilon-(gamma-glutamyl)lysine crosslink and the catalytic role of transglutaminases. Adv Protein Chem. 1977;31:1–133. doi: 10.1016/s0065-3233(08)60217-x. [DOI] [PubMed] [Google Scholar]
- Folk J. E. Transglutaminases. Annu Rev Biochem. 1980;49:517–531. doi: 10.1146/annurev.bi.49.070180.002505. [DOI] [PubMed] [Google Scholar]
- Fésüs L., Sándor M., Horváth L. I., Bagyinka C., Erdei A., Gergely J. Immune-complex-induced transglutaminase activation: its role in the Fc-receptor-mediated transmembrane effect on peritoneal macrophages. Mol Immunol. 1981 Jul;18(7):633–638. doi: 10.1016/0161-5890(81)90034-1. [DOI] [PubMed] [Google Scholar]
- Gimbrone M. A., Jr, Cotran R. S., Folkman J. Human vascular endothelial cells in culture. Growth and DNA synthesis. J Cell Biol. 1974 Mar;60(3):673–684. doi: 10.1083/jcb.60.3.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gospodarowicz D., Moran J. S., Braun D. L. Control of proliferation of bovine vascular endothelial cells. J Cell Physiol. 1977 Jun;91(3):377–385. doi: 10.1002/jcp.1040910307. [DOI] [PubMed] [Google Scholar]
- Greenberg C. S., Achyuthan K. E., Borowitz M. J., Shuman M. A. The transglutaminase in vascular cells and tissues could provide an alternate pathway for fibrin stabilization. Blood. 1987 Sep;70(3):702–709. [PubMed] [Google Scholar]
- Juprelle-Soret M., Wattiaux-De Coninck S., Wattiaux R. Subcellular localization of transglutaminase. Effect of collagen. Biochem J. 1988 Mar 1;250(2):421–427. doi: 10.1042/bj2500421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korner G., Bachrach U. Activation and de novo synthesis of transglutaminase in cultured glioma cells. J Cell Physiol. 1985 Sep;124(3):379–385. doi: 10.1002/jcp.1041240304. [DOI] [PubMed] [Google Scholar]
- Korner G., Bachrach U. Intracellular distribution of active and inactive transglutaminase in stimulated cultured C6 glioma cells. J Cell Physiol. 1987 Jan;130(1):44–50. doi: 10.1002/jcp.1041300108. [DOI] [PubMed] [Google Scholar]
- Lee K. N., Birckbichler P. J., Patterson M. K., Jr, Conway E., Maxwell M. Induction of cellular transglutaminase biosynthesis by sodium butyrate. Biochim Biophys Acta. 1987 Apr 2;928(1):22–28. doi: 10.1016/0167-4889(87)90081-4. [DOI] [PubMed] [Google Scholar]
- Lorand L., Conrad S. M. Transglutaminases. Mol Cell Biochem. 1984;58(1-2):9–35. doi: 10.1007/BF00240602. [DOI] [PubMed] [Google Scholar]
- Lorand L., Murthy S. N., Velasco P. T., Karush F. Identification of transglutaminase substrates in inside-out vesicles from human erythrocytes: immunoblotting with anti-dansyl antibody. Biochem Biophys Res Commun. 1986 Jan 29;134(2):685–689. doi: 10.1016/s0006-291x(86)80474-0. [DOI] [PubMed] [Google Scholar]
- Lorand L., Rule N. G., Ong H. H., Furlanetto R., Jacobsen A., Downey J., Oner N., Bruner-Lorand J. Amine specificity in transpeptidation. Inhibition of fibrin cross-linking. Biochemistry. 1968 Mar;7(3):1214–1223. doi: 10.1021/bi00843a043. [DOI] [PubMed] [Google Scholar]
- Maddox A. M., Haddox M. K. Transglutaminase activity increases in HL60 cells induced to differentiate with retinoic acid and TPA but not with DMSO. Exp Cell Biol. 1985;53(5):294–300. doi: 10.1159/000163325. [DOI] [PubMed] [Google Scholar]
- McKee P. A., Mattock P., Hill R. L. Subunit structure of human fibrinogen, soluble fibrin, and cross-linked insoluble fibrin. Proc Natl Acad Sci U S A. 1970 Jul;66(3):738–744. doi: 10.1073/pnas.66.3.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mehta K., Lopez-Berestein G. Expression of tissue transglutaminase in cultured monocytic leukemia (THP-1) cells during differentiation. Cancer Res. 1986 Mar;46(3):1388–1394. [PubMed] [Google Scholar]
- Milhaud P. G., Davies P. J., Pastan I., Gottesman M. M. Regulation of transglutaminase activity in Chinese hamster ovary cells. Biochim Biophys Acta. 1980 Jul 15;630(4):476–484. doi: 10.1016/0304-4165(80)90002-1. [DOI] [PubMed] [Google Scholar]
- Moore W. T., Jr, Murtaugh M. P., Davies P. J. Retinoic acid-induced expression of tissue transglutaminase in mouse peritoneal macrophages. J Biol Chem. 1984 Oct 25;259(20):12794–12802. [PubMed] [Google Scholar]
- Murtaugh M. P., Mehta K., Johnson J., Myers M., Juliano R. L., Davies P. J. Induction of tissue transglutaminase in mouse peritoneal macrophages. J Biol Chem. 1983 Sep 25;258(18):11074–11081. [PubMed] [Google Scholar]
- Pardee A. B. A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1286–1290. doi: 10.1073/pnas.71.4.1286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pisano J. J., Finlayson J. S., Peyton M. P. [Cross-link in fibrin polymerized by factor 13: epsilon-(gamma-glutamyl)lysine]. Science. 1968 May 24;160(3830):892–893. doi: 10.1126/science.160.3830.892. [DOI] [PubMed] [Google Scholar]
- Rice R. H., Green H. Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell. 1979 Nov;18(3):681–694. doi: 10.1016/0092-8674(79)90123-5. [DOI] [PubMed] [Google Scholar]
- Ross R. The pathogenesis of atherosclerosis--an update. N Engl J Med. 1986 Feb 20;314(8):488–500. doi: 10.1056/NEJM198602203140806. [DOI] [PubMed] [Google Scholar]
- Schwartz S. M., Benditt E. P. Clustering of replicating cells in aortic endothelium. Proc Natl Acad Sci U S A. 1976 Feb;73(2):651–653. doi: 10.1073/pnas.73.2.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott K. F., Russell D. H. Activation of transglutaminase during cell cycle in CHO cells. J Cell Physiol. 1982 Apr;111(1):111–116. doi: 10.1002/jcp.1041110117. [DOI] [PubMed] [Google Scholar]
- Slife C. W., Dorsett M. D., Bouquett G. T., Register A., Taylor E., Conroy S. Subcellular localization of a membrane-associated transglutaminase activity in rat liver. Arch Biochem Biophys. 1985 Sep;241(2):329–336. doi: 10.1016/0003-9861(85)90554-5. [DOI] [PubMed] [Google Scholar]
- Slife C. W., Morris G. S., Snedeker S. W. Solubilization and properties of the liver plasma membrane transglutaminase. Arch Biochem Biophys. 1987 Aug 15;257(1):39–47. doi: 10.1016/0003-9861(87)90540-6. [DOI] [PubMed] [Google Scholar]
- Tyrrell D. J., Sale W. S., Slife C. W. Localization of a liver transglutaminase and a large molecular weight transglutaminase substrate to a distinct plasma membrane domain. J Biol Chem. 1986 Nov 5;261(31):14833–14836. [PubMed] [Google Scholar]