Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Oct 15;295(Pt 2):477–483. doi: 10.1042/bj2950477

Optimization of molecular design in the evolution of metabolism: the glycogen molecule.

E Meléndez-Hevia 1, T G Waddell 1, E D Shelton 1
PMCID: PMC1134905  PMID: 8240246

Abstract

The animal glycogen molecule has to be designed in accordance with its metabolic function as a very effective fuel store allowing quick release of large amounts of glucose. In addition, the design should account for a high capacity of glucose storage in the least possible space. We have studied the optimization of these variables by means of a mathematical model of the glycogen molecule. Our results demonstrate that the structure is optimized to maximize (a) the total glucose stored in the smallest possible volume, (b) the proportion of it that can be directly released by phosphorylase before any debranching occurs, and (c) the number of non-reducing ends (points of attack for phosphorylase), which maximizes the speed of fuel release. The optimization of these four variables is achieved with appropriate values for two key parameters in glycogen design: the degree of branching and the length of the chains. The optimal values of these two parameters are precisely those found in cellular glycogen.

Full text

PDF
477

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aragón J. J., Tornheim K., Lowenstein J. M. On a possible role of IMP in the regulation of phosphorylase activity in skeletal muscle. FEBS Lett. 1980 Aug 25;117 (Suppl):K56–K64. doi: 10.1016/0014-5793(80)80570-9. [DOI] [PubMed] [Google Scholar]
  2. BAUDHUIN P., HERS H. G., LOEB H. AN ELECTRON MICROSCOPIC AND BIOCHEMICAL STUDY OF TYPE II GLYCOGENOSIS. Lab Invest. 1964 Sep;13:1139–1152. [PubMed] [Google Scholar]
  3. Bertocci L. A., Fleckenstein J. L., Antonio J. Human muscle fatigue after glycogen depletion: a 31P magnetic resonance study. J Appl Physiol (1985) 1992 Jul;73(1):75–81. doi: 10.1152/jappl.1992.73.1.75. [DOI] [PubMed] [Google Scholar]
  4. Cárdenas M. L., Cornish-Bowden A. Characteristics necessary for an interconvertible enzyme cascade to generate a highly sensitive response to an effector. Biochem J. 1989 Jan 15;257(2):339–345. doi: 10.1042/bj2570339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Easterby J. S. A generalized theory of the transition time for sequential enzyme reactions. Biochem J. 1981 Oct 1;199(1):155–161. doi: 10.1042/bj1990155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Garancis J. C. Type II glycogenosis. Biochemical and electron microscopic study. Am J Med. 1968 Feb;44(2):289–300. doi: 10.1016/0002-9343(68)90160-5. [DOI] [PubMed] [Google Scholar]
  7. Ggunja-Smith Z., Marshall J. J., Smith E. E. Enzymatic determination of the unit chain length of glycogen and related polysaccharides. FEBS Lett. 1971 Mar 22;13(5):309–311. doi: 10.1016/0014-5793(71)80248-x. [DOI] [PubMed] [Google Scholar]
  8. Goldsmith E., Sprang S., Fletterick R. Structure of maltoheptaose by difference Fourier methods and a model for glycogen. J Mol Biol. 1982 Apr 5;156(2):411–427. doi: 10.1016/0022-2836(82)90336-9. [DOI] [PubMed] [Google Scholar]
  9. Gunja-Smith Z., Marshall J. J., Mercier C., Smith E. E., Whelan W. J. A revision of the Meyer-Bernfeld model of glycogen and amylopectin. FEBS Lett. 1970 Dec 28;12(2):101–104. doi: 10.1016/0014-5793(70)80573-7. [DOI] [PubMed] [Google Scholar]
  10. Heinrich R., Schuster S., Holzhütter H. G. Mathematical analysis of enzymic reaction systems using optimization principles. Eur J Biochem. 1991 Oct 1;201(1):1–21. doi: 10.1111/j.1432-1033.1991.tb16251.x. [DOI] [PubMed] [Google Scholar]
  11. ILLINGWORTH B., LARNER J., CORI G. T. Structure of glycogens and amylopectins. I. Enzymatic determination of chain length. J Biol Chem. 1952 Dec;199(2):631–640. [PubMed] [Google Scholar]
  12. KAPLAN N. O. LACTATE DEHYDROGENASE--STRUCTURE AND FUNCTION. Brookhaven Symp Biol. 1964 Dec;17:131–153. [PubMed] [Google Scholar]
  13. Landon J., Ratcliffe J. G., Rees L. H., Scott A. P. Tumour-associated hormonal products. J Clin Pathol Suppl (R Coll Pathol) 1974;7:127–134. [PMC free article] [PubMed] [Google Scholar]
  14. MADSEN N. B., CORI C. F. The binding of glycogen and phosphorylase. J Biol Chem. 1958 Dec;233(6):1251–1256. [PubMed] [Google Scholar]
  15. MANNERS D. J. The molecular structure of glycogens. Adv Carbohydr Chem. 1957;12:261–298. doi: 10.1016/s0096-5332(08)60210-6. [DOI] [PubMed] [Google Scholar]
  16. Meléndez-Hevia E., Isidoro A. The game of the pentose phosphate cycle. J Theor Biol. 1985 Nov 21;117(2):251–263. doi: 10.1016/s0022-5193(85)80220-4. [DOI] [PubMed] [Google Scholar]
  17. Meléndez-Hevia E., Siverio J. M., Pérez J. A. Studies on glycolysis in vitro: role of glucose phosphorylation and phosphofructokinase activity on total velocity. Int J Biochem. 1984;16(5):469–476. doi: 10.1016/0020-711x(84)90162-9. [DOI] [PubMed] [Google Scholar]
  18. Meléndez-Hevia E. The game of the pentose phosphate cycle: a mathematical approach to study the optimization in design of metabolic pathways during evolution. Biomed Biochim Acta. 1990;49(8-9):903–916. [PubMed] [Google Scholar]
  19. Meléndez-Hevia E., Torres N. V. Economy of design in metabolic pathways: further remarks on the game of the pentose phosphate cycle. J Theor Biol. 1988 May 7;132(1):97–111. doi: 10.1016/s0022-5193(88)80193-0. [DOI] [PubMed] [Google Scholar]
  20. Opie L. H., Newsholme E. A. The activities of fructose 1,6-diphosphatase, phosphofructokinase and phosphoenolpyruvate carboxykinase in white muscle and red muscle. Biochem J. 1967 May;103(2):391–399. doi: 10.1042/bj1030391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ovádi J. Physiological significance of metabolic channelling. J Theor Biol. 1991 Sep 7;152(1):1–22. [PubMed] [Google Scholar]
  22. Rapoport T. A., Heinrich R., Jacobasch G., Rapoport S. A linear steady-state treatment of enzymatic chains. A mathematical model of glycolysis of human erythrocytes. Eur J Biochem. 1974 Feb 15;42(1):107–120. doi: 10.1111/j.1432-1033.1974.tb03320.x. [DOI] [PubMed] [Google Scholar]
  23. Ryman B. E., Whelan W. J. New aspects of glycogen metabolism. Adv Enzymol Relat Areas Mol Biol. 1971;34:285–443. doi: 10.1002/9780470122792.ch6. [DOI] [PubMed] [Google Scholar]
  24. Torres N. V., Mateo F., Meléndez-Hevia E., Kacser H. Kinetics of metabolic pathways. A system in vitro to study the control of flux. Biochem J. 1986 Feb 15;234(1):169–174. doi: 10.1042/bj2340169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Torres N. V., Mateo F., Meléndez-Hevia E. Shift in rat liver glycolysis control from fed to starved conditions. Flux control coefficients of glucokinase and phosphofructokinase. FEBS Lett. 1988 Jun 6;233(1):83–86. doi: 10.1016/0014-5793(88)81360-7. [DOI] [PubMed] [Google Scholar]
  26. Torres N. V., Sicilia J., Meléndez-Hevia E. Analysis and characterization of transition states in metabolic systems. Transition times and the passivity of the output flux. Biochem J. 1991 May 15;276(Pt 1):231–236. doi: 10.1042/bj2760231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. WALKER G. J., WHELAN W. J. The mechanism of carbohydrase action. 8. Structures of the muscle-phosphorylase limit dextrins of glycogen and amylopectin. Biochem J. 1960 Aug;76:264–268. doi: 10.1042/bj0760264. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES