Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Oct 15;303(Pt 2):599–605. doi: 10.1042/bj3030599

Ca2+ influx in platelets: activation by thrombin and by the depletion of the stores. Effect of cyclic nucleotides.

M G Doni 1, L Cavallini 1, A Alexandre 1
PMCID: PMC1137369  PMID: 7980423

Abstract

In aspirin-treated platelets the thrombin-induced increase of cytosolic Ca2+ ([Ca2+]i) associated with the release from the intracellular stores is followed by a decrease to the baseline which is largely dependent on the re-uptake into the stores. This is shown by the further increase of [Ca2+]i upon inhibition of the endomembrane Ca(2+)-ATPase with thapsigargin. The re-uptake of Ca2+ into the stores is accelerated by sodium nitroprusside (SNP) or prostacyclin (PGI2). In all cases, after store depletion with thapsigargin the influx of external Ca2+ is maximal. After a thrombin-induced cycle of Ca(2+)-release re-uptake the stores are partly full: in these conditions the addition of external Ca2+ elicits a significant increment of [Ca2+]i and a further filling of the stores. Both are strongly reduced if Ca2+ addition is preceded by SNP or PGI2. Similar results are obtained also if (by supplementing and then cheleting Ca2+) the stores are as full as in native platelets at the moment of adding Ca2+. The thrombin-activated Ca2+ influx is reversed by hirudin. A PGI2- and SNP-sensitive Mn2+ influx is observed if Mn2+ is added in place of Ca2+. It is concluded that thrombin activates a cyclic nucleotide-sensitive Ca2+ (and Mn2+) influx pathway dependent on the occupancy of the thrombin receptor and independent of the filling state of the stores. In the absence of thrombin, thapsigargin releases Ca2+ relatively rapidly from a fraction of the stores; the remaining deposits are discharged much more slowly. This may indicate that platelets contain two distinct classes of agonist-sensitive stores. The addition of external Ca2+ (or Mn2+) at short or long incubation times with thapsigargin monitors the influx of Ca2+ activated by the depletion of one or both types of stores. The depletion of each type of store activates Ca2+ (Mn2+) influx. This type of cation influx is not inhibited by the cyclic nucleotides.

Full text

PDF
599

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adunyah S. E., Dean W. L. Regulation of human platelet membrane Ca2+ transport by cAMP- and calmodulin-dependent phosphorylation. Biochim Biophys Acta. 1987 Oct 1;930(3):401–409. doi: 10.1016/0167-4889(87)90013-9. [DOI] [PubMed] [Google Scholar]
  2. Alonso M. T., Alvarez J., Montero M., Sanchez A., García-Sancho J. Agonist-induced Ca2+ influx into human platelets is secondary to the emptying of intracellular Ca2+ stores. Biochem J. 1991 Dec 15;280(Pt 3):783–789. doi: 10.1042/bj2800783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Authi K. S., Bokkala S., Patel Y., Kakkar V. V., Munkonge F. Ca2+ release from platelet intracellular stores by thapsigargin and 2,5-di-(t-butyl)-1,4-benzohydroquinone: relationship to Ca2+ pools and relevance in platelet activation. Biochem J. 1993 Aug 15;294(Pt 1):119–126. doi: 10.1042/bj2940119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brass L. F. Ca2+ homeostasis in unstimulated platelets. J Biol Chem. 1984 Oct 25;259(20):12563–12570. [PubMed] [Google Scholar]
  5. Brüne B., Ullrich V. Cyclic nucleotides and intracellular-calcium homeostasis in human platelets. Eur J Biochem. 1992 Jul 15;207(2):607–613. doi: 10.1111/j.1432-1033.1992.tb17087.x. [DOI] [PubMed] [Google Scholar]
  6. Brüne B., Ullrich V. Different calcium pools in human platelets and their role in thromboxane A2 formation. J Biol Chem. 1991 Oct 15;266(29):19232–19237. [PubMed] [Google Scholar]
  7. Cavallini L., Alexandre A. Ca2+ efflux from platelets. Control by protein kinase C and the filling state of the intracellular Ca2+ stores. Eur J Biochem. 1994 Jun 1;222(2):693–702. doi: 10.1111/j.1432-1033.1994.tb18914.x. [DOI] [PubMed] [Google Scholar]
  8. Deana R., Ruzzene M., Doni M. G., Zoccarato F., Alexandre A. Cyclic GMP and nitroprusside inhibit the activation of human platelets by fluoroaluminate. Biochim Biophys Acta. 1989 Nov 20;1014(2):203–206. doi: 10.1016/0167-4889(89)90035-9. [DOI] [PubMed] [Google Scholar]
  9. Di Virgilio F., Fasolato C., Steinberg T. H. Inhibitors of membrane transport system for organic anions block fura-2 excretion from PC12 and N2A cells. Biochem J. 1988 Dec 15;256(3):959–963. doi: 10.1042/bj2560959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Doni M. G., Alexandre A., Padoin E., Francesconi M. A., Deana R. Staurosporine-independent platelet aggregation induced by the calcium ionophore ionomycin is inhibited by prostacyclin and sodium nitroprusside and stimulated by adrenaline. Arch Biochem Biophys. 1993 Mar;301(2):431–438. doi: 10.1006/abbi.1993.1167. [DOI] [PubMed] [Google Scholar]
  11. Doni M. G., Deana R., Bertoncello S., Zoccarato F., Alexandre A. Forskolin and prostacyclin inhibit fluoride induced platelet activation and protein kinase C dependent responses. Biochem Biophys Res Commun. 1988 Nov 15;156(3):1316–1323. doi: 10.1016/s0006-291x(88)80776-9. [DOI] [PubMed] [Google Scholar]
  12. Doni M. G., Deana R., Padoin E., Ruzzene M., Alexandre A. Platelet activation by diacylglycerol or ionomycin is inhibited by nitroprusside. Biochim Biophys Acta. 1991 Sep 24;1094(3):323–329. doi: 10.1016/0167-4889(91)90093-d. [DOI] [PubMed] [Google Scholar]
  13. Enouf J., Bredoux R., Boucheix C., Mirshahi M., Soria C., Levy-Toledano S. Possible involvement of two proteins (phosphoprotein and CD9 (p24)) in regulation of platelet calcium fluxes. FEBS Lett. 1985 Apr 22;183(2):398–402. doi: 10.1016/0014-5793(85)80819-x. [DOI] [PubMed] [Google Scholar]
  14. Enouf J., Giraud F., Bredoux R., Bourdeau N., Levy-Toledano S. Possible role of a cAMP-dependent phosphorylation in the calcium release mediated by inositol 1,4,5-trisphosphate in human platelet membrane vesicles. Biochim Biophys Acta. 1987 Apr 2;928(1):76–82. doi: 10.1016/0167-4889(87)90087-5. [DOI] [PubMed] [Google Scholar]
  15. Geiger J., Nolte C., Butt E., Sage S. O., Walter U. Role of cGMP and cGMP-dependent protein kinase in nitrovasodilator inhibition of agonist-evoked calcium elevation in human platelets. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1031–1035. doi: 10.1073/pnas.89.3.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  17. Heemskerk J. W., Vis P., Feijge M. A., Hoyland J., Mason W. T., Sage S. O. Roles of phospholipase C and Ca(2+)-ATPase in calcium responses of single, fibrinogen-bound platelets. J Biol Chem. 1993 Jan 5;268(1):356–363. [PubMed] [Google Scholar]
  18. Hettasch J. M., Le Breton G. C. Modulation of Ca2+ fluxes in isolated platelet vesicles: effects of cAMP-dependent protein kinase and protein kinase inhibitor on Ca2+ sequestration and release. Biochim Biophys Acta. 1987 Oct 22;931(1):49–58. doi: 10.1016/0167-4889(87)90049-8. [DOI] [PubMed] [Google Scholar]
  19. Jackson T. R., Patterson S. I., Thastrup O., Hanley M. R. A novel tumour promoter, thapsigargin, transiently increases cytoplasmic free Ca2+ without generation of inositol phosphates in NG115-401L neuronal cells. Biochem J. 1988 Jul 1;253(1):81–86. doi: 10.1042/bj2530081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kawahara Y., Yamanishi J., Fukuzaki H. Inhibitory action of guanosine 3',5'-monophosphate on thrombin-induced calcium mobilization in human platelets. Thromb Res. 1984 Jan 15;33(2):203–209. doi: 10.1016/0049-3848(84)90181-6. [DOI] [PubMed] [Google Scholar]
  21. Knight D. E., Scrutton M. C. Cyclic nucleotides control a system which regulates Ca2+ sensitivity of platelet secretion. Nature. 1984 May 3;309(5963):66–68. doi: 10.1038/309066a0. [DOI] [PubMed] [Google Scholar]
  22. Käser-Glanzmann R., Gerber E., Lüscher E. F. Regulation of the intracellular calcium level in human blood platelets: cyclic adenosine 3',5'-monophosphate dependent phosphorylation of a 22,000 dalton component in isolated Ca2+-accumulating vesicles. Biochim Biophys Acta. 1979 Dec 12;558(3):344–347. doi: 10.1016/0005-2736(79)90271-2. [DOI] [PubMed] [Google Scholar]
  23. Lapetina E. G., Billah M. M., Cuatrecasas P. The phosphatidylinositol cycle and the regulation of arachidonic acid production. Nature. 1981 Jul 23;292(5821):367–369. doi: 10.1038/292367a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lapetina E. G. Incorporation of synthetic 1,2-diacylglycerol into platelet phosphatidylinositol is increased by cyclic AMP. FEBS Lett. 1986 Jan 20;195(1-2):111–114. doi: 10.1016/0014-5793(86)80141-7. [DOI] [PubMed] [Google Scholar]
  25. Lerea K. M., Glomset J. A. Agents that elevate the concentration of cAMP in platelets inhibit the formation of a NaDodSO4-resistant complex between thrombin and a 40-kDa protein. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5620–5624. doi: 10.1073/pnas.84.16.5620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lerea K. M., Glomset J. A., Krebs E. G. Agents that elevate cAMP levels in platelets decrease thrombin binding. J Biol Chem. 1987 Jan 5;262(1):282–288. [PubMed] [Google Scholar]
  27. Mahaut-Smith M. P., Sage S. O., Rink T. J. Receptor-activated single channels in intact human platelets. J Biol Chem. 1990 Jun 25;265(18):10479–10483. [PubMed] [Google Scholar]
  28. Maurice D. H., Haslam R. J. Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP. Mol Pharmacol. 1990 May;37(5):671–681. [PubMed] [Google Scholar]
  29. Meldolesi J., Clementi E., Fasolato C., Zacchetti D., Pozzan T. Ca2+ influx following receptor activation. Trends Pharmacol Sci. 1991 Aug;12(8):289–292. doi: 10.1016/0165-6147(91)90577-f. [DOI] [PubMed] [Google Scholar]
  30. Moos M., Jr, Goldberg N. D. Cyclic AMP opposes IP3-induced calcium release from permeabilized human platelets. Second Messengers Phosphoproteins. 1988;12(4):163–170. [PubMed] [Google Scholar]
  31. Nakashima S., Tohmatsu T., Hattori H., Okano Y., Nozawa Y. Inhibitory action of cyclic GMP on secretion, polyphosphoinositide hydrolysis and calcium mobilization in thrombin-stimulated human platelets. Biochem Biophys Res Commun. 1986 Mar 28;135(3):1099–1104. doi: 10.1016/0006-291x(86)91041-7. [DOI] [PubMed] [Google Scholar]
  32. O'Rourke F., Zavoico G. B., Feinstein M. B. Release of Ca2+ by inositol 1,4,5-trisphosphate in platelet membrane vesicles is not dependent on cyclic AMP-dependent protein kinase. Biochem J. 1989 Feb 1;257(3):715–721. doi: 10.1042/bj2570715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pannocchia A., Hardisty R. M. Cyclic AMP inhibits platelet activation independently of its effect on cytosolic free calcium. Biochem Biophys Res Commun. 1985 Feb 28;127(1):339–345. doi: 10.1016/s0006-291x(85)80164-9. [DOI] [PubMed] [Google Scholar]
  34. Papp B., Enyedi A., Kovács T., Sarkadi B., Wuytack F., Thastrup O., Gárdos G., Bredoux R., Levy-Toledano S., Enouf J. Demonstration of two forms of calcium pumps by thapsigargin inhibition and radioimmunoblotting in platelet membrane vesicles. J Biol Chem. 1991 Aug 5;266(22):14593–14596. [PubMed] [Google Scholar]
  35. Papp B., Pászty K., Kovács T., Sarkadi B., Gárdos G., Enouf J., Enyedi A. Characterization of the inositol trisphosphate-sensitive and insensitive calcium stores by selective inhibition of the endoplasmic reticulum-type calcium pump isoforms in isolated platelet membrane vesicles. Cell Calcium. 1993 Jul;14(7):531–538. doi: 10.1016/0143-4160(93)90074-g. [DOI] [PubMed] [Google Scholar]
  36. Pollock W. K., Rink T. J. Thrombin and ionomycin can raise platelet cytosolic Ca2+ to micromolar levels by discharge of internal Ca2+ stores: studies using fura-2. Biochem Biophys Res Commun. 1986 Aug 29;139(1):308–314. doi: 10.1016/s0006-291x(86)80114-0. [DOI] [PubMed] [Google Scholar]
  37. Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
  38. Quinton T. M., Dean W. L. Cyclic AMP-dependent phosphorylation of the inositol-1,4,5-trisphosphate receptor inhibits Ca2+ release from platelet membranes. Biochem Biophys Res Commun. 1992 Apr 30;184(2):893–899. doi: 10.1016/0006-291x(92)90675-b. [DOI] [PubMed] [Google Scholar]
  39. Randriamampita C., Tsien R. Y. Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature. 1993 Aug 26;364(6440):809–814. doi: 10.1038/364809a0. [DOI] [PubMed] [Google Scholar]
  40. Sage S. O., Merritt J. E., Hallam T. J., Rink T. J. Receptor-mediated calcium entry in fura-2-loaded human platelets stimulated with ADP and thrombin. Dual-wavelengths studies with Mn2+. Biochem J. 1989 Mar 15;258(3):923–926. doi: 10.1042/bj2580923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sage S. O., Merritt J. E., Hallam T. J., Rink T. J. Receptor-mediated calcium entry in fura-2-loaded human platelets stimulated with ADP and thrombin. Dual-wavelengths studies with Mn2+. Biochem J. 1989 Mar 15;258(3):923–926. doi: 10.1042/bj2580923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sage S. O., Reast R., Rink T. J. ADP evokes biphasic Ca2+ influx in fura-2-loaded human platelets. Evidence for Ca2+ entry regulated by the intracellular Ca2+ store. Biochem J. 1990 Feb 1;265(3):675–680. doi: 10.1042/bj2650675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sage S. O., Rink T. J. The kinetics of changes in intracellular calcium concentration in fura-2-loaded human platelets. J Biol Chem. 1987 Dec 5;262(34):16364–16369. [PubMed] [Google Scholar]
  44. Sargeant P., Clarkson W. D., Sage S. O., Heemskerk J. W. Calcium influx evoked by Ca2+ store depletion in human platelets is more susceptible to cytochrome P-450 inhibitors than receptor-mediated calcium entry. Cell Calcium. 1992 Oct;13(9):553–564. doi: 10.1016/0143-4160(92)90035-q. [DOI] [PubMed] [Google Scholar]
  45. Sargeant P., Farndale R. W., Sage S. O. The tyrosine kinase inhibitors methyl 2,5-dihydroxycinnamate and genistein reduce thrombin-evoked tyrosine phosphorylation and Ca2+ entry in human platelets. FEBS Lett. 1993 Jan 11;315(3):242–246. doi: 10.1016/0014-5793(93)81172-v. [DOI] [PubMed] [Google Scholar]
  46. Siess W., Lapetina E. G. Prostacyclin inhibits platelet aggregation induced by phorbol ester or Ca2+ ionophore at steps distal to activation of protein kinase C and Ca2+-dependent protein kinases. Biochem J. 1989 Feb 15;258(1):57–65. doi: 10.1042/bj2580057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Takai Y., Kaibuchi K., Matsubara T., Nishizuka Y. Inhibitory action of guanosine 3', 5'-monophosphate on thrombin-induced phosphatidylinositol turnover and protein phosphorylation in human platelets. Biochem Biophys Res Commun. 1981 Jul 16;101(1):61–67. doi: 10.1016/s0006-291x(81)80010-1. [DOI] [PubMed] [Google Scholar]
  48. Tao J., Johansson J. S., Haynes D. H. Stimulation of dense tubular Ca2+ uptake in human platelets by cAMP. Biochim Biophys Acta. 1992 Mar 23;1105(1):29–39. doi: 10.1016/0005-2736(92)90159-j. [DOI] [PubMed] [Google Scholar]
  49. Thastrup O., Dawson A. P., Scharff O., Foder B., Cullen P. J., Drøbak B. K., Bjerrum P. J., Christensen S. B., Hanley M. R. Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. Agents Actions. 1989 Apr;27(1-2):17–23. doi: 10.1007/BF02222186. [DOI] [PubMed] [Google Scholar]
  50. Thastrup O., Foder B., Scharff O. The calcium mobilizing tumor promoting agent, thapsigargin elevates the platelet cytoplasmic free calcium concentration to a higher steady state level. A possible mechanism of action for the tumor promotion. Biochem Biophys Res Commun. 1987 Feb 13;142(3):654–660. doi: 10.1016/0006-291x(87)91464-1. [DOI] [PubMed] [Google Scholar]
  51. Tohmatsu T., Nishida A., Nagao S., Nakashima S., Nozawa Y. Inhibitory action of cyclic AMP on inositol 1,4,5-trisphosphate-induced Ca2+ release in saponin-permeabilized platelets. Biochim Biophys Acta. 1989 Sep 19;1013(2):190–193. doi: 10.1016/0167-4889(89)90048-7. [DOI] [PubMed] [Google Scholar]
  52. Watson S. P., McConnell R. T., Lapetina E. G. The rapid formation of inositol phosphates in human platelets by thrombin is inhibited by prostacyclin. J Biol Chem. 1984 Nov 10;259(21):13199–13203. [PubMed] [Google Scholar]
  53. White G. C., 2nd, Barton D. W., White T. E., Fischer T. H. Cyclic AMP-dependent protein kinase does not increase calcium transport in platelet microsomes. Thromb Res. 1989 Dec 1;56(5):575–581. doi: 10.1016/0049-3848(89)90265-x. [DOI] [PubMed] [Google Scholar]
  54. Yoshida K., Nachmias V. T. Calcium sequestration in human platelets: is it stimulated by protein kinase C? Cell Calcium. 1989 Jul;10(5):299–307. doi: 10.1016/0143-4160(89)90056-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES