Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Sep 15;222(3):639–647. doi: 10.1042/bj2220639

Binding of malonyl-CoA to isolated mitochondria. Evidence for high- and low-affinity sites in liver and heart and relationship to inhibition of carnitine palmitoyltransferase activity.

M I Bird, E D Saggerson
PMCID: PMC1144225  PMID: 6487267

Abstract

[14C]Malonyl-CoA bound to intact mitochondria isolated from rat liver and heart in a manner consistent with the presence of two independent classes of binding sites in each tissue. The binding characteristics for mitochondria obtained from fed male rats were: for heart, KD(1) = 11-18nM, KD(2) = 30 microM, N1 = 7pmol/mg of protein, N2 = approx. 660pmol/mg of protein; for liver, KD(1) = 0.1 microM, KD(2) = 5.6 microM, N1 = 11pmol/mg of protein, N2 = 165pmol/mg of protein. In the presence of 40 microM-palmitoyl-CoA the characteristics of binding at the high-affinity sites were changed, so that for heart KD(1) = 0.26 microM, with no change in N1 and for liver KD(1) = approx. 2 microM, with N1 increased to approx. 40pmol/mg of protein. Differences between the two tissues in tightness of malonyl-CoA binding at the high-affinity sites explains the considerably greater sensitivity of heart CPT1 (overt form of carnitine palmitoyltransferase) to inhibition by malonyl-CoA [Saggerson & Carpenter, (1981) FEBS Lett. 129, 229-232; McGarry, Mills, Long & Foster (1983) Biochem. J. 214, 21-28]. Starvation (24h) did not change the characteristics of [14C]malonyl-CoA binding to liver mitochondria and did not alter the I50 (concentration giving 50% inhibition) for displacement of [14C]malonyl-CoA by palmitoyl-CoA. Therefore the decreased sensitivity of liver CPT1 to inhibition by malonyl-CoA in starvation [Saggerson & Carpenter (1981) FEBS Lett. 129, 225-228; Bremer (1981) Biochim. Biophys. Acta 665, 628-631] is not explained by differences in malonyl-CoA binding. Percentage occupancy of the high-affinity sites in heart mitochondria by malonyl-CoA correlated closely with percentage inhibition of CPT1 measured under similar conditions. This finding supports the proposal that the high-affinity binding sites are the functional sites mediating inhibition of CPT1 by malonyl-CoA. Similar experiments with liver mitochondria also suggested that the occupancy of high-affinity sites by malonyl-CoA regulates CPT1 activity. 5,5'-Dithiobis-(2-nitrobenzoic acid), which decreased the sensitivity of heart or liver CPT1 to inhibition by malonyl-CoA [Saggerson & Carpenter (1982) FEBS Lett. 137, 124-128], also decreased [14C]malonyl-CoA binding to the high-affinity sites of heart mitochondria. N1 values for [14C]malonyl-CoA binding to high-affinity sites in liver mitochondria were determined in various physiological states which encompassed a 7-fold range of CPT1 maximal activity (fed, starved, pregnant, hypothyroid, foetal). The N1 value did not change in these states.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
639

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bremer J. The effect of fasting on the activity of liver carnitine palmitoyltransferase and its inhibition by malonyl-CoA. Biochim Biophys Acta. 1981 Sep 24;665(3):628–631. doi: 10.1016/0005-2760(81)90282-4. [DOI] [PubMed] [Google Scholar]
  2. Clarke P. R., Bieber L. L. Isolation and purification of mitochondrial carnitine octanoyltransferase activities from beef heart. J Biol Chem. 1981 Oct 10;256(19):9861–9868. [PubMed] [Google Scholar]
  3. Cook G. A., Otto D. A., Cornell N. W. Differential inhibition of ketogenesis by malonyl-CoA in mitochondria from fed and starved rats. Biochem J. 1980 Dec 15;192(3):955–958. doi: 10.1042/bj1920955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hoppel C. L., Tomec R. J. Carnitine palmityltransferase. Location of two enzymatic activities in rat liver mitochondria. J Biol Chem. 1972 Feb 10;247(3):832–841. [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
  7. McGarry J. D., Leatherman G. F., Foster D. W. Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA. J Biol Chem. 1978 Jun 25;253(12):4128–4136. [PubMed] [Google Scholar]
  8. McGarry J. D., Mills S. E., Long C. S., Foster D. W. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat. Biochem J. 1983 Jul 15;214(1):21–28. doi: 10.1042/bj2140021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mills S. E., Foster D. W., McGarry J. D. Interaction of malonyl-CoA and related compounds with mitochondria from different rat tissues. Relationship between ligand binding and inhibition of carnitine palmitoyltransferase I. Biochem J. 1983 Jul 15;214(1):83–91. doi: 10.1042/bj2140083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ontko J. A., Johns M. L. Evaluation of malonyl-CoA in the regulation of long-chain fatty acid oxidation in the liver. Evidence for an unidentified regulatory component of the system. Biochem J. 1980 Dec 15;192(3):959–962. doi: 10.1042/bj1920959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Robinson I. N., Zammit V. A. Sensitivity of carnitine acyltransferase I to malonly-CoA inhibition in isolated rat liver mitochondria is quantitatively related to hepatic malonyl-CoA concentration in vivo. Biochem J. 1982 Jul 15;206(1):177–179. doi: 10.1042/bj2060177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Saggerson E. D. Carnitine acyltransferase activities in rat liver and heart measured with palmitoyl-CoA and octanoyl-CoA. Latency, effects of K+, bivalent metal ions and malonyl-CoA. Biochem J. 1982 Feb 15;202(2):397–405. doi: 10.1042/bj2020397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Saggerson E. D., Carpenter C. A. Malonyl CoA inhibition of carnitine acyltransferase activities: effects of thiol-group reagents. FEBS Lett. 1982 Jan 11;137(1):124–128. doi: 10.1016/0014-5793(82)80329-3. [DOI] [PubMed] [Google Scholar]
  14. Saggerson E. D., Carpenter C. A. Regulation of hepatic carnitine palmitoyltransferase activity during the foetal-neonatal transition. FEBS Lett. 1982 Dec 13;150(1):177–180. doi: 10.1016/0014-5793(82)81329-x. [DOI] [PubMed] [Google Scholar]
  15. Saggerson E. D., Carpenter C. A. Response to starvation of hepatic carnitine palmitoyltransferase activity and its regulation by malonyl-CoA. Sex differences and effects of pregnancy. Biochem J. 1982 Dec 15;208(3):673–678. doi: 10.1042/bj2080673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Saggerson E. D., Carpenter C. A. The effect of malonyl-CoA on overt and latent carnitine acyltransferase activities in rat liver and adipocyte mitochondria. Biochem J. 1983 Feb 15;210(2):591–597. doi: 10.1042/bj2100591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Saggerson E. D., Carpenter C. A., Tselentis B. S. Effects of thyroidectomy and starvation on the activity and properties of hepatic carnitine palmitoyltransferase. Biochem J. 1982 Dec 15;208(3):667–672. doi: 10.1042/bj2080667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Veerkamp J. H., Van Moerkerk H. T. The effect of malonyl-CoA on fatty acid oxidation in rat muscle and liver mitochondria. Biochim Biophys Acta. 1982 Feb 15;710(2):252–255. doi: 10.1016/0005-2760(82)90157-6. [DOI] [PubMed] [Google Scholar]
  19. Zammit V. A. Increased sensitivity of carnitine palmitoyltransferase I activity to malonyl-CoA inhibition after preincubation of intact rat liver mitochondria with micromolar concentrations of malonyl-CoA in vitro. Biochem J. 1983 Mar 15;210(3):953–956. doi: 10.1042/bj2100953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zammit V. A. Reversible sensitization and desensitization of carnitine palmitoyltransferase I to inhibition by malonyl-CoA in isolated rat liver mitochondria. Significance for the mechanism of malonyl-CoA-induced sensitization. Biochem J. 1983 Sep 15;214(3):1027–1030. doi: 10.1042/bj2141027. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES