Abstract
Measurement of the adenine nucleotide and inorganic phosphate content of normoxic and ischaemic kidney in vivo has been made, comparing enzymic assay (after freeze-clamping and acid extraction) with quantification by 31P-n.m.r. Both methods give similar results for ATP, and n.m.r. quantification of Pi gives a value 25-50% of that obtained by enzymic assay. ADP, which is largely invisible to n.m.r. in the normoxic kidney, remains invisible during ischaemia despite a 2-3 fold rise in enzymically assayed ADP. N.m.r. and enzymic assay of the acid extracts give similar values for all metabolites measured. The question of ADP binding in the kidney is discussed, as are the implications for the metabolic regulation of ADP-dependent reactions.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akerboom T. P., Bookelman H., Zuurendonk P. F., van der Meer R., Tager J. M. Intramitochondrial and extramitochondrial concentrations of adenine nucleotides and inorganic phosphate in isolated hepatocytes from fasted rats. Eur J Biochem. 1978 Mar 15;84(2):413–420. doi: 10.1111/j.1432-1033.1978.tb12182.x. [DOI] [PubMed] [Google Scholar]
- Beis I., Newsholme E. A. Effects of calcium ions on adenine nucleotide translocase from cardiac muscle. J Mol Cell Cardiol. 1976 Nov;8(11):863–876. doi: 10.1016/0022-2828(76)90069-9. [DOI] [PubMed] [Google Scholar]
- Burch H. B., Choi S., Dence C. N., Alvey T. R., Cole B. R., Lowry O. H. Metabolic effects of large fructose loads in different parts of the rat nephron. J Biol Chem. 1980 Sep 10;255(17):8239–8244. [PubMed] [Google Scholar]
- ChandraRajan J., Klein L. Determination of inorganic phosphorus in the presence of organic phosphorus and high concentrations of proteins. Anal Biochem. 1976 May 7;72:407–412. doi: 10.1016/0003-2697(76)90548-0. [DOI] [PubMed] [Google Scholar]
- Cohen S. M. Simultaneous 13C and 31P NMR studies of perfused rat liver. Effects of insulin and glucagon and a 13C NMR assay of free Mg2+. J Biol Chem. 1983 Dec 10;258(23):14294–14308. [PubMed] [Google Scholar]
- Dawson M. J., Gadian D. G., Wilkie D. R. Contraction and recovery of living muscles studies by 31P nuclear magnetic resonance. J Physiol. 1977 Jun;267(3):703–735. doi: 10.1113/jphysiol.1977.sp011835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duée E. D., Vignais P. V. Kinetics and specificity of the adenine nucleotide translocation in rat liver mitochondria. J Biol Chem. 1969 Jul 25;244(14):3920–3931. [PubMed] [Google Scholar]
- Erecińska M., Wilson D. F. Regulation of cellular energy metabolism. J Membr Biol. 1982;70(1):1–14. doi: 10.1007/BF01871584. [DOI] [PubMed] [Google Scholar]
- Freeman D., Bartlett S., Radda G., Ross B. Energetics of sodium transport in the kidney. Saturation transfer 31P-NMR. Biochim Biophys Acta. 1983 Apr 5;762(2):325–336. doi: 10.1016/0167-4889(83)90087-3. [DOI] [PubMed] [Google Scholar]
- Groen A. K., Wanders R. J., Westerhoff H. V., van der Meer R., Tager J. M. Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem. 1982 Mar 25;257(6):2754–2757. [PubMed] [Google Scholar]
- Hoult D. I., Busby S. J., Gadian D. G., Radda G. K., Richards R. E., Seeley P. J. Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature. 1974 Nov 22;252(5481):285–287. doi: 10.1038/252285a0. [DOI] [PubMed] [Google Scholar]
- Meyer R. A., Kuchmerick M. J., Brown T. R. Application of 31P-NMR spectroscopy to the study of striated muscle metabolism. Am J Physiol. 1982 Jan;242(1):C1–11. doi: 10.1152/ajpcell.1982.242.1.C1. [DOI] [PubMed] [Google Scholar]
- Ogawa S., Rottenberg H., Brown T. R., Shulman R. G., Castillo C. L., Glynn P. High-resolution 31P nuclear magnetic resonance study of rat liver mitochondria. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1796–1800. doi: 10.1073/pnas.75.4.1796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siess E. A., Wieland O. H. Phosphorylation state of cytosolic and mitochondrial adenine nucleotides and of pyruvate dehydrogenase in isolated rat liver cells. Biochem J. 1976 Apr 15;156(1):91–102. doi: 10.1042/bj1560091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siess E. A., Wieland O. H. Regulation of pyruvate dehydrogenase interconversion in isolated hepatocytes by the mitochondrial ATP/ADP ratio. FEBS Lett. 1975 Apr 1;52(2):226–230. doi: 10.1016/0014-5793(75)80811-8. [DOI] [PubMed] [Google Scholar]
- Stubbs M. Inhibitors of the adenine nucleotide translocase. Pharmacol Ther. 1979;7(2):329–350. doi: 10.1016/0163-7258(79)90035-4. [DOI] [PubMed] [Google Scholar]
- Stubbs M., Vignais P. V., Krebs H. A. Is the adenine nucleotide translocator rate-limiting for oxidative phosphorylation? Biochem J. 1978 May 15;172(2):333–342. doi: 10.1042/bj1720333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veech R. L., Lawson J. W., Cornell N. W., Krebs H. A. Cytosolic phosphorylation potential. J Biol Chem. 1979 Jul 25;254(14):6538–6547. [PubMed] [Google Scholar]