Abstract
The topography of the rigor complex between subfragment-1 (S-1) of myosin and actin was investigated by using several specific antibodies directed to well-located sequences in actin. A major contact area for S-1 was characterized in the hydrophilic 18-28 constant sequence, and the variable 1-7 sequence was only found to be in close proximity to the interface. The C-terminal extremity of actin situated around Cys-374 appeared to be included in a region close to the S-1 heavy chain and the N-terminal part of actin. The interaction between tropomyosin and actin was also studied. Neither of the terminal parts of actin were involved in this interaction. Thus, the regions involved in the interactions of S-1 and tropomyosin with actin do not overlap.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelstein R. S., Eisenberg E. Regulation and kinetics of the actin-myosin-ATP interaction. Annu Rev Biochem. 1980;49:921–956. doi: 10.1146/annurev.bi.49.070180.004421. [DOI] [PubMed] [Google Scholar]
- Benyamin Y., Roustan C., Boyer M. Anti-actin antibodies. Chemical modification allows the selective production of antibodies to the N-terminal region. J Immunol Methods. 1986 Jan 22;86(1):21–29. doi: 10.1016/0022-1759(86)90260-7. [DOI] [PubMed] [Google Scholar]
- Benyamin Y., Roustan C., Boyer M. Induction by chemically modified actin derivatives of antibody specificity. A relation between modified sites and antibody interactions with monomeric and filamentous actins. FEBS Lett. 1983 Aug 22;160(1-2):41–45. doi: 10.1016/0014-5793(83)80932-6. [DOI] [PubMed] [Google Scholar]
- Boyer M., Roustan C., Benyamin Y. DNAse I-actin complex: an immunological study. Biosci Rep. 1985 Jan;5(1):39–46. doi: 10.1007/BF01117439. [DOI] [PubMed] [Google Scholar]
- Cavadore J. C., Berta P., Axelrud-Cavadore C., Haiech J. Calcium binding of arterial tropomyosin: involvement in the thin filament regulation of smooth muscle. Biochemistry. 1985 Sep 10;24(19):5216–5221. doi: 10.1021/bi00340a039. [DOI] [PubMed] [Google Scholar]
- Cavadore J. C., Roustan C., Benyamin Y., Boyer M., Haiech J. Structural variations in actins. Biochemical and immunological tools for probing the structure of rabbit skeletal-muscle and bovine aortic actins. Biochem J. 1985 Oct 15;231(2):363–368. doi: 10.1042/bj2310363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Criddle A. H., Geeves M. A., Jeffries T. The use of actin labelled with N-(1-pyrenyl)iodoacetamide to study the interaction of actin with myosin subfragments and troponin/tropomyosin. Biochem J. 1985 Dec 1;232(2):343–349. doi: 10.1042/bj2320343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egelman E. H. The structure of F-actin. J Muscle Res Cell Motil. 1985 Apr;6(2):129–151. doi: 10.1007/BF00713056. [DOI] [PubMed] [Google Scholar]
- Engvall E. Enzyme immunoassay ELISA and EMIT. Methods Enzymol. 1980;70(A):419–439. doi: 10.1016/s0076-6879(80)70067-8. [DOI] [PubMed] [Google Scholar]
- Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
- Hambly B. D., Barden J. A., Miki M., dos Remedios C. G. Structural and functional domains on actin. Bioessays. 1986 Mar;4(3):124–128. doi: 10.1002/bies.950040308. [DOI] [PubMed] [Google Scholar]
- Hiratsuka T. Role of the 50-kilodalton tryptic peptide of myosin subfragment 1 as a communicating apparatus between the adenosinetriphosphatase and actin binding sites. Biochemistry. 1986 Apr 22;25(8):2101–2109. doi: 10.1021/bi00356a039. [DOI] [PubMed] [Google Scholar]
- Huxley H. E. The mechanism of muscular contraction. Science. 1969 Jun 20;164(3886):1356–1365. doi: 10.1126/science.164.3886.1356. [DOI] [PubMed] [Google Scholar]
- Ikkai T., Wahl P., Auchet J. C. Anisotropy decay of labelled actin. Evidence of the flexibility of the peptide chain in F-actin molecules. Eur J Biochem. 1979 Jan 15;93(2):397–408. doi: 10.1111/j.1432-1033.1979.tb12836.x. [DOI] [PubMed] [Google Scholar]
- Jacobson G. R., Rosenbusch J. P. ATP binding to a protease-resistant core of actin. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2742–2746. doi: 10.1073/pnas.73.8.2742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Labbe J. P., Mornet D., Vandest P., Kassab R. Proximity of alkali light chains to 27K domain of the heavy chain in myosin subfragment 1. Biochem Biophys Res Commun. 1981 Sep 16;102(1):466–475. doi: 10.1016/0006-291x(81)91543-6. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lymn R. W., Taylor E. W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry. 1971 Dec 7;10(25):4617–4624. doi: 10.1021/bi00801a004. [DOI] [PubMed] [Google Scholar]
- Mornet D., Bertrand R., Pantel P., Audemard E., Kassab R. Structure of the actin-myosin interface. Nature. 1981 Jul 23;292(5821):301–306. doi: 10.1038/292301a0. [DOI] [PubMed] [Google Scholar]
- Mossakowska M., Strzelecka-Gołaszewska H. Identification of amino acid substitutions differentiating actin isoforms in their interaction with myosin. Eur J Biochem. 1985 Dec 2;153(2):373–381. doi: 10.1111/j.1432-1033.1985.tb09313.x. [DOI] [PubMed] [Google Scholar]
- Muszbek L., Laki K. Cleavage of actin by thrombin. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2208–2211. doi: 10.1073/pnas.71.6.2208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Méjean C., Boyer M., Labbé J. P., Derancourt J., Benyamin Y., Roustan C. Antigenic probes locate the myosin subfragment 1 interaction site on the N-terminal part of actin. Biosci Rep. 1986 May;6(5):493–499. doi: 10.1007/BF01116141. [DOI] [PubMed] [Google Scholar]
- Offer G., Moos C., Starr R. A new protein of the thick filaments of vertebrate skeletal myofibrils. Extractions, purification and characterization. J Mol Biol. 1973 Mar 15;74(4):653–676. doi: 10.1016/0022-2836(73)90055-7. [DOI] [PubMed] [Google Scholar]
- Rouayrenc J. F., Bertrand R., Kassab R., Walzthöny D., Bähler M., Wallimann T. Further characterization of the structural and functional properties of the cross-linked complex between F-actin and myosin S-1. Eur J Biochem. 1985 Jan 15;146(2):391–401. doi: 10.1111/j.1432-1033.1985.tb08665.x. [DOI] [PubMed] [Google Scholar]
- Roustan C., Benyamin Y., Boyer M., Cavadore J. C. Structural variations in actins. A study of the immunological reactivity of the N-terminal region. Biochem J. 1986 Jan 1;233(1):193–197. doi: 10.1042/bj2330193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
- Sutoh K. Identification of myosin-binding sites on the actin sequence. Biochemistry. 1982 Jul 20;21(15):3654–3661. doi: 10.1021/bi00258a020. [DOI] [PubMed] [Google Scholar]
- Szilagyi L., Lu R. C. Changes of lysine reactivities of actin in complex with myosin subfragment-1, tropomyosin and troponin. Biochim Biophys Acta. 1982 Dec 20;709(2):204–211. doi: 10.1016/0167-4838(82)90462-9. [DOI] [PubMed] [Google Scholar]
- Takashi R. Fluorescence energy transfer between subfragment-1 and actin points in the rigor complex of actosubfragment-1. Biochemistry. 1979 Nov 13;18(23):5164–5169. doi: 10.1021/bi00590a021. [DOI] [PubMed] [Google Scholar]
- Weeds A. G., Taylor R. S. Separation of subfragment-1 isoenzymes from rabbit skeletal muscle myosin. Nature. 1975 Sep 4;257(5521):54–56. doi: 10.1038/257054a0. [DOI] [PubMed] [Google Scholar]
- Woods E. F. Studies on the denaturation of tropomyosin and light meromyosin. Int J Protein Res. 1969;1(1):29–43. doi: 10.1111/j.1399-3011.1969.tb01624.x. [DOI] [PubMed] [Google Scholar]
- Yanagida T., Nakase M., Nishiyama K., Oosawa F. Direct observation of motion of single F-actin filaments in the presence of myosin. Nature. 1984 Jan 5;307(5946):58–60. doi: 10.1038/307058a0. [DOI] [PubMed] [Google Scholar]