Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Sep 15;214(3):959–965. doi: 10.1042/bj2140959

A critical appraisal of the effect of oxidized glutathione on hepatic glucose 6-phosphate dehydrogenase activity.

H R Levy, M Christoff
PMCID: PMC1152338  PMID: 6626166

Abstract

Experiments were undertaken to elucidate the mechanism of the reversal of NADPH inhibition of rat liver glucose 6-phosphate dehydrogenase by oxidized gluthathione alone and in combination with a putative cofactor described by Eggleston & Krebs [(1974) Biochem. J. 138, 425-435]. Evidence is presented that this reversal is largely an artifact, caused by the incorrect application of a control assay procedure and a spurious effect of Zn2+ (added in order to inhibit glutathione reductase) in crude enzyme solutions. When the proper assay procedure is used and glutathione reductase is inhibited with low concentrations of Hg2+, glutathione addition has no effect on NADPH inhibition of glucose 6-phosphate dehydrogenase. No evidence was found for the existence of a cofactor that mediates an effect of glutathione on glucose 6-phosphate dehydrogenase.

Full text

PDF
959

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L. E., Nehrlich S. C., Champigny M. L. Light modulation of enzyme activity: activation of the light effect mediators by reduction and modulation of enzyme activity by thiol-disulfide exchange. Plant Physiol. 1978 Apr;61(4):601–605. doi: 10.1104/pp.61.4.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashton A. R., Brennan T., Anderson L. E. Thioredoxin-like Activity of Thylakoid Membranes: THIOREDOXIN CATALYZING THE REDUCTIVE INACTIVATION OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE OCCURS IN BOTH SOLUBLE AND MEMBRANE-BOUND FORM. Plant Physiol. 1980 Oct;66(4):605–608. doi: 10.1104/pp.66.4.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Axelsson K., Eriksson S., Mannervik B. Purification and characterization of cytoplasmic thioltransferase (glutathione:disulfide oxidoreductase) from rat liver. Biochemistry. 1978 Jul 25;17(15):2978–2984. doi: 10.1021/bi00608a006. [DOI] [PubMed] [Google Scholar]
  4. Axelsson K., Mannervik B. General specificity of cytoplasmic thioltransferase (thiol:disulfide oxidoreductase) from rat liver for thiol and disulfide substrates. Biochim Biophys Acta. 1980 Jun 13;613(2):324–336. doi: 10.1016/0005-2744(80)90087-x. [DOI] [PubMed] [Google Scholar]
  5. Carlberg I., Mannervik B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem. 1975 Jul 25;250(14):5475–5480. [PubMed] [Google Scholar]
  6. DeFlora A., Morelli A., Benatti U., Giuliano F. An improved procedure for rapid isolation of glucose 6-phosphate dehydrogenase from human erythrocytes. Arch Biochem Biophys. 1975 Jul;169(1):362–363. doi: 10.1016/0003-9861(75)90353-7. [DOI] [PubMed] [Google Scholar]
  7. Eggleston L. V., Krebs H. A. Regulation of the pentose phosphate cycle. Biochem J. 1974 Mar;138(3):425–435. doi: 10.1042/bj1380425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Engström N. E., Holmgren A., Larsson A., Söderhäll S. Isolation and characterization of calf liver thioredoxin. J Biol Chem. 1974 Jan 10;249(1):205–210. [PubMed] [Google Scholar]
  9. Francis G. L., Ballard F. J. Enzyme inactivation via disulphide-thiol exchange as catalysed by a rat liver membrane protein. Biochem J. 1980 Feb 15;186(2):581–590. doi: 10.1042/bj1860581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haghighi B., Flynn T. G., Levy H. R. Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. Isolation and sequence of a peptide containing an essential lysine. Biochemistry. 1982 Dec 7;21(25):6415–6420. doi: 10.1021/bi00268a015. [DOI] [PubMed] [Google Scholar]
  11. Holten D. Relationships among the multiple molecular forms of rat liver glucose 6-phosphate dehydrogenase. Biochim Biophys Acta. 1972 Apr 7;268(1):4–12. doi: 10.1016/0005-2744(72)90190-8. [DOI] [PubMed] [Google Scholar]
  12. Isaacs J., Binkley F. Glutathione dependent control of protein disulfide-sulfhydryl content by subcellular fractions of hepatic tissue. Biochim Biophys Acta. 1977 Mar 29;497(1):192–204. doi: 10.1016/0304-4165(77)90152-0. [DOI] [PubMed] [Google Scholar]
  13. Jacob H. S., Jandl J. H. Effects of sulfhydryl inhibition on red blood cells. 3. Glutathione in the regulation of the hexose monophosphate pathway. J Biol Chem. 1966 Sep 25;241(18):4243–4250. [PubMed] [Google Scholar]
  14. Luthman M., Holmgren A. Glutaredoxin from calf thymus. Purification to homogeneity. J Biol Chem. 1982 Jun 25;257(12):6686–6690. [PubMed] [Google Scholar]
  15. Luthman M., Holmgren A. Rat liver thioredoxin and thioredoxin reductase: purification and characterization. Biochemistry. 1982 Dec 21;21(26):6628–6633. doi: 10.1021/bi00269a003. [DOI] [PubMed] [Google Scholar]
  16. MIZE C. E., LANGDON R. G. Hepatic glutathione reductase. I. Purification and general kinetic properties. J Biol Chem. 1962 May;237:1589–1595. [PubMed] [Google Scholar]
  17. May J. M. The role of glutathione in rat adipocyte pentose phosphate cycle activity. Arch Biochem Biophys. 1981 Mar;207(1):117–127. doi: 10.1016/0003-9861(81)90016-3. [DOI] [PubMed] [Google Scholar]
  18. Nevaldine B. H., Hyde C. M., Levy H. R. Mammary glucose 6-phosphate dehydrogenase. Molecular weight studies. Arch Biochem Biophys. 1974 Nov;165(1):398–406. doi: 10.1016/0003-9861(74)90178-7. [DOI] [PubMed] [Google Scholar]
  19. Reitzer L. J., Wice B. M., Kennell D. The pentose cycle. Control and essential function in HeLa cell nucleic acid synthesis. J Biol Chem. 1980 Jun 25;255(12):5616–5626. [PubMed] [Google Scholar]
  20. Rodriguez-Segade S., Freire M., Carrion A. Regulation of the oxidative phase of the pentose phosphate cycle in mussels. Biochem J. 1978 Mar 15;170(3):577–582. doi: 10.1042/bj1700577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rodríguez-Segade S., Carrión A., Freire M. Isolation and purification of a regulating cofactor of the pentose-phosphate pathway. Biochem Biophys Res Commun. 1979 Jul 12;89(1):148–154. doi: 10.1016/0006-291x(79)90956-2. [DOI] [PubMed] [Google Scholar]
  22. Shreve D. S., Levy H. R. Kinetic mechanism of glucose-6-phosphate dehydrogenase from the lactating rat mammary gland. Implications for regulation. J Biol Chem. 1980 Apr 10;255(7):2670–2677. [PubMed] [Google Scholar]
  23. Thompson R. E., Spivey H. O., Katz A. J. Rat liver cytoplasmic glucose-6-phosphate dehydrogenase. Steady-state kinetic properties and circular dichroism. Biochemistry. 1976 Feb 24;15(4):862–867. doi: 10.1021/bi00649a021. [DOI] [PubMed] [Google Scholar]
  24. Veech R. L., Eggleston L. V., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem J. 1969 Dec;115(4):609–619. doi: 10.1042/bj1150609a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Watanabe A., Taketa K., Kosaka K. Glutathione-dependent interconversion of microheterogeneous forms of glucose-6-phosphate dehydrogenase in rat liver. J Biochem. 1972 Sep;72(3):695–701. doi: 10.1093/oxfordjournals.jbchem.a129948. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES