Abstract
The activity of pyruvate dehydrogenase in extracts of pig mesenteric lymphocytes was measured under different preincubation conditions. The mitogens concanavalin A and ionophore A23187 both increased pyruvate dehydrogenase activity. In both cases activation required extracellular Ca2+. Digitonin-permeabilized cells required 0.5 microM free Ca2+ for half-maximal activation of pyruvate dehydrogenase. The stimulation by concanavalin A in intact cells was probably not due to changes in effectors of pyruvate dehydrogenase kinase. This evidence suggests that activation of pyruvate dehydrogenase is by Ca2+ activation of pyruvate dehydrogenase phosphatase and supports the view that the cytoplasmic free [Ca2+] rises to something less than 1 microM on stimulation with mitogens.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beachy J. C., Goldman D., Czech M. P. Lectins activate lymphocyte pyruvate dehydrogenase by a mechanism sensitive to protease inhibitors. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6256–6260. doi: 10.1073/pnas.78.10.6256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blomquist C. H., Larson K. E., Taddeini L. Pyridine nucleotide coenzyme levels in phytohemagglutinin-stimulated human lymphocytes. Exp Cell Res. 1976 Jul;100(2):447–450. doi: 10.1016/0014-4827(76)90179-8. [DOI] [PubMed] [Google Scholar]
- Cooper R. H., Randle P. J., Denton R. M. Regulation of heart muscle pyruvate dehydrogenase kinase. Biochem J. 1974 Dec;143(3):625–641. doi: 10.1042/bj1430625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coore H. G., Denton R. M., Martin B. R., Randle P. J. Regulation of adipose tissue pyruvate dehydrogenase by insulin and other hormones. Biochem J. 1971 Nov;125(1):115–127. doi: 10.1042/bj1250115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denton R. M., Halestrap A. P. Regulation of pyruvate metabolism in mammalian tissues. Essays Biochem. 1979;15:37–77. [PubMed] [Google Scholar]
- Denton R. M., McCormack J. G., Edgell N. J. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J. 1980 Jul 15;190(1):107–117. doi: 10.1042/bj1900107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dippenaar N. G., Brand M. D. The isolation of lymphocyte mitochondria and their regulation of extramitochondrial free Ca2+ concentration. Biochem J. 1982 Mar 15;202(3):731–737. doi: 10.1042/bj2020731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felber S. M., Brand M. D. Factors determining the plasma-membrane potential of lymphocytes. Biochem J. 1982 May 15;204(2):577–585. doi: 10.1042/bj2040577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansford R. G. Studies on the effects of coenzyme A-SH: acetyl coenzyme A, nicotinamide adenine dinucleotide: reduced nicotinamide adenine dinucleotide, and adenosine diphosphate: adenosine triphosphate ratios on the interconversion of active and inactive pyruvate dehydrogenase in isolated rat heart mitochondria. J Biol Chem. 1976 Sep 25;251(18):5483–5489. [PubMed] [Google Scholar]
- Hesketh T. R., Smith G. A., Houslay M. D., Warren G. B., Metcalfe J. C. Is an early calcium flux necessary to stimulate lymphocytes? Nature. 1977 Jun 9;267(5611):490–494. doi: 10.1038/267490a0. [DOI] [PubMed] [Google Scholar]
- Hume D. A., Radik J. L., Ferber E., Weidemann M. J. Aerobic glycolysis and lymphocyte transformation. Biochem J. 1978 Sep 15;174(3):703–709. doi: 10.1042/bj1740703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hume D. A., Vijayakumar E. K., Schweinberger F., Russell L. M., Weidemann M. J. The role of calcium ions in the regulation of rat thymocyte pyruvate oxidation by mitogens. Biochem J. 1978 Sep 15;174(3):711–716. doi: 10.1042/bj1740711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobus W. E., Moreadith R. W., Vandegaer K. M. Mitochondrial respiratory control. Evidence against the regulation of respiration by extramitochondrial phosphorylation potentials or by [ATP]/[ADP] ratios. J Biol Chem. 1982 Mar 10;257(5):2397–2402. [PubMed] [Google Scholar]
- Lyall R. M., Dubois J. H., Crumpton M. J. Ionomycin stimulates T-lymphocytes to grow. Biochem Soc Trans. 1980 Dec;8(6):720–721. doi: 10.1042/bst0080720a. [DOI] [PubMed] [Google Scholar]
- Maino V. C., Green N. M., Crumpton M. J. The role of calcium ions in initiating transformation of lymphocytes. Nature. 1974 Sep 27;251(5473):324–327. doi: 10.1038/251324b0. [DOI] [PubMed] [Google Scholar]
- Metcalfe J. C., Pozzan T., Smith G. A., Hesketh T. R. A calcium hypothesis for the control of cell growth. Biochem Soc Symp. 1980;45:1–26. [PubMed] [Google Scholar]
- Murphy E., Coll K., Rich T. L., Williamson J. R. Hormonal effects on calcium homeostasis in isolated hepatocytes. J Biol Chem. 1980 Jul 25;255(14):6600–6608. [PubMed] [Google Scholar]
- Pozzan T., Corps A. N., Montecucco C., Hesketh T. R., Metcalfe J. C. Cap formation by various ligands on lymphocytes shows the same dependence on high cellular ATP levels. Biochim Biophys Acta. 1980 Nov 18;602(3):558–566. doi: 10.1016/0005-2736(80)90334-x. [DOI] [PubMed] [Google Scholar]
- Ruf J., Gella F. J. Activation of lymphocyte glycogen phosphorylase by mitogens. Biochem Biophys Res Commun. 1982 Aug 31;107(4):1395–1399. doi: 10.1016/s0006-291x(82)80153-8. [DOI] [PubMed] [Google Scholar]
- Scott I. D., Akerman K. E., Nicholls D. G. Calcium-ion transport by intact synaptosomes. Intrasynaptosomal compartmentation and the role of the mitochondrial membrane potential. Biochem J. 1980 Dec 15;192(3):873–880. doi: 10.1042/bj1920873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seals J. R., Czech M. P. Evidence that insulin activates an intrinsic plasma membrane protease in generating a secondary chemical mediator. J Biol Chem. 1980 Jul 25;255(14):6529–6531. [PubMed] [Google Scholar]
- Siess E. A., Brocks D. G., Lattke H. K., Wieland O. H. Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate. Biochem J. 1977 Aug 15;166(2):225–235. doi: 10.1042/bj1660225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsien R. Y., Pozzan T., Rink T. J. T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature. 1982 Jan 7;295(5844):68–71. doi: 10.1038/295068a0. [DOI] [PubMed] [Google Scholar]
- Whitehouse S., Cooper R. H., Randle P. J. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J. 1974 Sep;141(3):761–774. doi: 10.1042/bj1410761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]