Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 2005 Dec;25(8):1245–1254. doi: 10.1007/s10571-005-8501-2

Oxidative DNA Damage and Activation of c-Jun N-Terminal Kinase Pathway in Fibroblasts from Patients with Hereditary Spastic Paraplegia

Andreina Milano 1, Nicola Montesano Gesualdi 2, Raffaele Teperino 1, Franca Esposito 2, Sergio Cocozza 1, Paola Ungaro 3,
PMCID: PMC11529223  PMID: 16388335

Abstract

  1. Hereditary spastic paraplegia (HSP) is a genetically heterogeneous group of neurodegenerative disorders affecting 1 in 10,000 individuals. The present study was aimed to elucidate the role played by reactive oxygen species (ROS) in the pathogenesis of this disease.

  2. To address this question we used 7–11 passaged fibroblasts from HSP patients to measure the extent of DNA damage induced by H2O2 treatment and to evaluate the JNK phosphorylation level after hydrogen peroxide and serum stimuli.

  3. The present study demonstrates that HSP cells compared to controls are more sensitive to DNA damages induced by H2O2 treatment, and that JNK phosphorylation levels are increased in HSP fibroblasts compared to controls after hydrogen peroxide and serum stimuli. These results suggest a ROS-mediated pathogenetic mechanism for this disease.

Keywords: reactive oxygen species, DNA damage, Comet assay, JNK phosphorylation, Western blotting

References

  1. Adler, V., Yin, Z., Fuchs, S. Y., Benezra, M., Rosario, L., Tew, K. D., Pincus, M. R., Sardana, M., Henderson, C. J., Wolf, C. R., Davis, R. J., and Ronai, Z. (1999). Regulation of JNK signaling by GSTp. EMBO J.18:1321–1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atorino, L., Silvestri, L., Koppen, M., Cassina, L., Ballabio, A., Marconi, R., Langer, T., and Casari, G. (2003). Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia. J. Cell. Biol.163:777–787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barrientos, A., and Moraes, C. T. (1999). Titrating the effects of mitochondrial complex I impairment in the cell physiology. J. Biol. Chem.274:16188–16197. [DOI] [PubMed] [Google Scholar]
  4. Behan, W., and Maia, M. (1974). Strumpell's familial spastic paraplegia: Genetics and neuropathy. J. Neurol. Neurosurg. Psychiatry37:8–20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Casari, G., De Fusco, M., Ciarmatori, S., Zeviani, M., Mora, M., Fernandez, P., De Michele, G., Filla, A., Cocozza, S., Marconi, R., Durr, A., Fontaine, B., and Ballabio, A. (1998). Spastic paraplegia and oxphos impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell93:973–983. [DOI] [PubMed] [Google Scholar]
  6. Dizdaroglu, M. (1992). Oxidative damage to DNA in mammalian chromatin. Mutat. Res.275:331–342. [DOI] [PubMed] [Google Scholar]
  7. Facchinetti, F., Dawson, V., and Dawson, T. (1998). Free radicals as mediators of neuronal injury. Cell. Mol. Neurobiol. 18:667–682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferreirinha, F., Quattrini, A., Pirozzi, M., Valsecchi, V., Dina, G., Broccoli, V., Auricchio, A., Piemonte, F., Tozzi, G., Gaeta, L., Casari, G., Ballabio, A., and Rugarli, E. I. (2004). Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J. Clin. Invest.113:231–242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Filla, A., De Michele, G., Marconi, R., Bucci, L., Carillo, C., Castellano, A. E., Iorio, L., Kniahynicki, C., Rossi, F., and Campanella, G. (1992). Prevalence of hereditary ataxias and spastic paraplegias in Molise, a region of Italy. J. Neurol.239:351–353. [DOI] [PubMed] [Google Scholar]
  10. Finkel, T. (2000). Redox-dependent signal tranduction. FEBS Lett.476:52–54. [DOI] [PubMed] [Google Scholar]
  11. Fuchs, S. Y., Adler, V., Pincus, M. R., and Ronai, Z. (1998a). MEKK1/JNK stabilizes and activates p53. Proc. Natl. Acad. Sci. U.S.A.95:10541–10546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fuchs, S. Y., Adler, V., Buschmann, T., Yin, Z., Wu, X., Jones, S. T., and Ronai, Z. (1998b). JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes Dev.12:2658–2663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ham, J., Eilers, A., Whitfield, J., Neame, S. J., and Shah, B. (2000). c-Jun and transcriptional control of neuronal apoptosis. Biochem. Pharmacol.60:1015–1021. [DOI] [PubMed] [Google Scholar]
  14. Harangi, M., Remenyik, E., Seres, I., Varga, Z., Catona, E., and Paragh, G. (2002). Determination of DNA damage induced by oxidative stress in hyperlipidemic patients. Mutat. Res.513:17–25. [DOI] [PubMed] [Google Scholar]
  15. Kan, E., Undeger, U., Bali, M., and Basaran, N. (2002). Assessment of DNA strand breakage by the alkaline comet assay in dialysis patients and the role of Vitamin E supplementation. Mutat. Res.520:151–159. [DOI] [PubMed] [Google Scholar]
  16. Karin, M. (1995). The regulation of AP-1 activity by mitogen activated protein kinases. J. Biol. Chem.270:16483–16486. [DOI] [PubMed] [Google Scholar]
  17. Kasibhatla, S., Brunner, T., Genestier, L., Echeverri, F., Mahboubi, A., Green, M., and Douglas, R. (1998). DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-kB and AP-1. Mol. Cell.1:543–551. [DOI] [PubMed] [Google Scholar]
  18. Kassie, F., Parzefall, W., and Knasmuller, S. (2000). Single cell gel electrophoresis assay: A new technique for human biomonitoring studies. Mutat. Res.463:13–31. [DOI] [PubMed] [Google Scholar]
  19. Kisby, G. E., Kabel, H., Hugon, J., and Spencer, P. (1999). Damage and repair of nerve cell DNA in toxic stress. Drug Metab. Rev.31:589–618. [DOI] [PubMed] [Google Scholar]
  20. Kyriakis, J. M., and Avruch, J. (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev.81:807–869. [DOI] [PubMed] [Google Scholar]
  21. Kyriakis, J. M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E. A., Ahmad, M. F., and Avruch, J. (1994). The stress-activated protein kinase subfamily of c-jun kinases. Nature369:156–160. [DOI] [PubMed] [Google Scholar]
  22. Li, N., Ragheb, K., Lawler, G., Sturgis, J., Rajwa, B., Melendez, J. A., and Robinson, J. P. (2003). Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem.278:8516–8525. [DOI] [PubMed] [Google Scholar]
  23. Lovell, M., Gabbita, S., and Markesbery, W. (1999). Increased DNA oxidation, and decreased levels of repair products in Alzheimer's disease ventricular CSF. J. Neurochem.72:771–776. [DOI] [PubMed] [Google Scholar]
  24. Martin, L. J. (2001). Neuronal cell death in nervous system development, disease, and injury. Int. J. Mol. Med.7:455–478. [PubMed] [Google Scholar]
  25. Mc Dermott, C., White, K., Bushby, K., and Shaw, P. (2000). Hereditary spastic paraparesis: A review of new developments. J. Neurol. Neurosurg. Psychiatry69:150–160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mecocci, P., Fano, G., Fulle, S., Macgarvey, U., Shinobu, L., Polidori, M., Cherubini, A., Vecchiet, J., Senin, U., and Beal, M. (1999). Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic. Biol. Med.26:303–308. [DOI] [PubMed] [Google Scholar]
  27. Minden, A., Lin, A., McMahon, M., Lange-Carter, C., Derijard, B., Davis, R. J., Johnson, G. L., and Karin, M. (1994). Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science266:1719–1723. [DOI] [PubMed] [Google Scholar]
  28. Patel, S., and Latterich, M. (1998). The AAA team: Related ATPases with diverse functions. Trends Cell. Biol.8:65–71. [PubMed] [Google Scholar]
  29. Paul, A., Wilson, S., Belhaman, C. M., Robinson, K. J. M., Scott, P. H., Gould, G. W., and Plevin, R. (1997). Stress-activated protein kinases: Activation, regulation, and function. Cell. Signal.9:403–410. [DOI] [PubMed] [Google Scholar]
  30. Pianese, L., Busino, L., De Biase, I., De Cristofaro, T., Lo Casale, M. S., Giuliano, P., Monticelli, A., Turano, M., Criscuolo, C., Filla, A., Varrone, S., and Cocozza, S. (2002). Up-regulation of c-Jun N-terminal kinase pathway in Friedreich's ataxia cells. Hum. Mol. Genet.11:2989–2996. [DOI] [PubMed] [Google Scholar]
  31. Polo, J. M., Calleja, J., Combarros, O., and Berciano, J. (1993). Hereditary “pure” spastic paraplegia: A study of nine families. J. Neurol. Neurosurg. Psychiatry56:175–181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Reid, E. (2003). Many pathways lead to hereditary spastic paraplegia. Lancet Neurol.2:210. [DOI] [PubMed] [Google Scholar]
  33. Rep, M., and Grivell, L. A. (1996). The role of protein degradation in mitochondrial function and biogenesis. Curr. Genet.30:367–380. [DOI] [PubMed] [Google Scholar]
  34. Richter, C., Park, J., and Arnes, B. (1988). Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. U.S.A.85:6465–6467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ristow, M., Pfister, M. F., Yee, A. J., Schubert, M., Michael, L., Zhang, C. Y., Ueki, K., Michael, M. D., Lowell, B. B., and Kahn, C. R. (2000). Frataxin activates mitochondrial energy conversion and oxidative phosphorylation. Proc. Natl. Acad. Sci. U.S.A.97:12239–12243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sardas, S., Yilmaz, M., Oztok, U., Cakir, N., and Karakaya, A. E. (2001). Assessment of DNA strand breakage by comet assay in diabetic patients and the role of antioxidant supplementation. Mutat. Res.490:123–129. [DOI] [PubMed] [Google Scholar]
  37. Schapira, A. H., Cooper, J. M., Dexter, D., Clark, J. B., Jenner, P., and Marsden, C. D. (1990). Mitochondrial complex I deficiency in Parkinson's disease. J. Neurochem.54:823–827. [DOI] [PubMed] [Google Scholar]
  38. Schulz, J. B., Dehmer, T., Schols, L., Mende, H., Hardt, C., Vorgerd, M., Burk, K., Matson, W., Dichgans, J., Beal, M. F., and Bogdanov, M. B. (2000). Oxidative stress in patients with Friedreich ataxia. Neurology55:1719–1721. [DOI] [PubMed] [Google Scholar]
  39. Shaikh, A. Y., and Martin, L. J. (2002). DNA base-excision repair enzyme apurinic/apyrimidinic endonuclease/redox factor-1 is increased and competent in the brain and spinal cord of individuals with amyotrophic lateral sclerosis. Neuromol. Med.2:47–60. [DOI] [PubMed] [Google Scholar]
  40. Singh, N. P., McCoy, M. T., Tice, R. R., and Schnider, E. L. (1988). A simple technique for quantification of low levels of DNA damage in individual cells. Exp. Cell. Res.175:184–191. [DOI] [PubMed] [Google Scholar]
  41. Stadtman, E. (1993). Oxidation of free amino acid residues in proteins by radiolysis and by metal catalysed reactions. Annu. Rev. Biochem.62:797–821. [DOI] [PubMed] [Google Scholar]
  42. Tice, R. R., Strauss, G. H., and Peters, W. P. (1992). High-dose combination alkylating agents with autologous bone-marrow support in patients with breast cancer: Preliminary assessment of DNA damage in individual peripheral blood lymphocytes using the single cell gel electrophoresis assay. Mutat. Res.271:101–113. [DOI] [PubMed] [Google Scholar]
  43. Whitmarsh, A., and Davis, R. (1996). Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J. Mol. Med.74:589–607. [DOI] [PubMed] [Google Scholar]
  44. Wong, A., Yang, J., Cavadini, P., Gellera, C., Lonnerdal, B., Taroni, F., and Cortopassi, G. (1999). The Friedreich's ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis. Hum. Mol. Genet.8:425–430. [DOI] [PubMed] [Google Scholar]
  45. Xia, M., Dickens, J., Raingeaud, R., Davis, J., and Greenberg, M. E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science270:1326–1331. [DOI] [PubMed] [Google Scholar]
  46. Zhang, Y., Dawson, V. L., and Dawson, T. M. (2000). Oxidative stress and genetics in the pathogenesis of Parkinson's disease. Neurobiol. Dis.7:240–250. [DOI] [PubMed] [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES