Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 2003 Dec;23(6):887–894. doi: 10.1023/B:CEMN.0000005317.79634.27

Localization of Microtubule-Associated Protein (MAP) 1B in the Postsynaptic Densities of the Rat Cerebral Cortex

Shin-Ichi Kawakami 1,2, Kazuyo Muramoto 3,, Masumi Ichikawa 2,4, Yoichiro Kuroda 3,4
PMCID: PMC11530180  PMID: 14964776

Abstract

1.Although microtubule-associated protein (MAP) 1B and its phosphorylation have been suggested to be important for synapse formation among cortical neurons, the localization of MAP1B in synapses has not yet been confirmed. In this report, we examine the localization of MAP1B in synaptic regions.

2.The localization of MAP1B was observed by immunohistochemical and electron microscopic techniques using specific antibodies against MAP1B.

3.MAP1B immunoreactivities were widely distributed in the cerebral cortex and were observed in the postsynaptic area but not in presynaptic terminals.

4.These synapses were classified as the asymmetrical type.

5.Only some synapses exhibited MAP1B immunoreactivities. MAP1B-immuno-positive synapses accounted for about half of the total synapses.

6.Such a localization suggests MAP1B's important roles in synaptic functions.

Keywords: MAP1B, synapse, postsynaptic thickening, cerebral cortex, rat

References

  1. Billups, D., Hanley, J. G., Orme, M., Attwell, D., and Moss, S. J. (2000). GABAC receptor sensitivity is modulated by interaction with MAP1B. J. Neurosci. 20:8643–8650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bloom, G. S., Luca, F. C., and Vallee, R. B. (1985). Microtubule-associated protein 1B: Identification of a major component of the neuronal cytoskeleton. Proc. Natl. Acad. Sci. U.S.A. 82:5404–5408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brugg, B., Reddy, D., and Matus, A. (1993). Attenuation of microtubule-associated protein 1B expression by antisense oligodeoxynucleotides inhibits initiation of neurite outgrowth. Neuroscience52:489–496. [DOI] [PubMed] [Google Scholar]
  4. Burg, M. A., and Cole, G. J. (1994). Claustrin, an antiadhesive neural keratan sulfate proteoglycan, is structurally related to MAP1B. J. Neurobiol. 25:1–22. [DOI] [PubMed] [Google Scholar]
  5. Burg, M. A., Lee, J.-A., and Cole, G. J. (1998). An alternatively spliced, 5′-truncated MAP1B isoform is expressed in the developing chick nervous system. J. Mol. Neurosci. 9:177–186. [DOI] [PubMed] [Google Scholar]
  6. Bush, M. S., Goold, R. G., Moya, F., and Gordon-Weeks, P. R. (1996). An analysis of an axonal gradient of phosphorylated MAP 1B in cultured rat sensory neurons. Eur. J. Neurosci. 8:235–248. [DOI] [PubMed] [Google Scholar]
  7. Calvert, R., and Anderton, B. H. (1985). A microtubule-associated protein (MAP1) which is expressed at elevated levels during development of the rat cerebellum. EMBO J. 4:1171–1176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. González-Billault, C., and Avila, J. (2000). Molecular genetic approaches to microtubule-associated protein function. Histol. Histopathol. 15:1177–1183. [DOI] [PubMed] [Google Scholar]
  9. Hanley, J. G., Koulen, P., Bedford, F., Gordon-Weeks, P. R., and Moss, S. J. (1999). The protein MAP-1B links GABAC receptors to the cytoskeleton at retinal synapses. Nature397:66–69. [DOI] [PubMed] [Google Scholar]
  10. Hummel, T., Krukkert, K., Roos, J., Davis, G., and Klämbt, C. (2000). Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron26:357–370. [DOI] [PubMed] [Google Scholar]
  11. Kuroda, Y., Ichikawa, M., Muramoto, K., Kobayashi, K., Matsuda, Y., Ogura, A., and Kudo, Y. (1992). Block of synapse formation between cerebral cortical neurons by a protein kinase inhibitor. Neurosci. Lett. 135:255–258. [DOI] [PubMed] [Google Scholar]
  12. Kutschera, W., Zauner, W., Wiche, G., and Propst, F. (1998). The mouse and rat MAP1B genes: Genomic organization and alternative transcription. Genomics49:430–436. [DOI] [PubMed] [Google Scholar]
  13. Lien, L. L., Feener, C. A., Fischbach, N., and Kunkel, L. M. (1994). Cloning of human microtubule-associated protein 1B and the identification of a related gene on chromosome 15. Genomics22:273–280. [DOI] [PubMed] [Google Scholar]
  14. Mansfield, S. G., Diaz-Nido, J., Gordon-Weeks, P. R., and Avila, J. (1991). The distribution and phosphorylation of the microtubule-associated protein MAP1B in growth cones. J. Neurocytol. 21:1007–1022. [DOI] [PubMed] [Google Scholar]
  15. Muramoto, K., Ichikawa, M., Kawahara, M., Kobayashi, K., and Kuroda, Y. (1993). Frequency of synchronous oscillations of neuronal activity increases during development and is correlated to the number of synapses in cultured cortical neuron networks. Neurosci. Lett. 163:163–165. [DOI] [PubMed] [Google Scholar]
  16. Muramoto, K., Kawakami, S.-I., Kawahara, M., Kobayashi, K., Ichikawa, M., and Kuroda, Y. (1996). MAP1B exists in postsynaptic regions of some synapses in cerebral cortex of adult rat. Soc. Neurosci. Abstr. 22:1951. [Google Scholar]
  17. Muramoto, K., Taniguchi, H., Kawahara, M., Kobayashi, K., Nonomura, Y., and Kuroda, Y. (1994). A substrate of ecto-protein kinase is microtubule-associated protein (MAP) 1B in cortical cell cultures undergoing synaptogenesis. Biochem. Biophys. Res. Commun. 205:1467–1473. [DOI] [PubMed] [Google Scholar]
  18. Nagashima, K., Nakanishi, S., and Matsuda, Y. (1991). Inhibition of nerve growth factor-induced neurite outgrowth of PC12 cells by a protein kinase inhibitor which does not permeate the cell membrane. FEBS Lett. 293:119–123. [DOI] [PubMed] [Google Scholar]
  19. Nieuwenhuys, R. (1994). The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat. Embryol. (Berl.)190:307–337. [DOI] [PubMed] [Google Scholar]
  20. Nothias, F., Fischer, I., Murray, M., Mirman, S., and Vincent, J.-D. (1996). Expression of a phosphorylated isoform of MAP1B is maintained in adult central nervous system areas that retain capacity for structural plasticity. J. Comp. Neurol. 368:317–334. [DOI] [PubMed] [Google Scholar]
  21. Pedrotti, B., Francolini, M., Cotelli, F., and Islam, K. (1996). Modulation of microtubule shape in vitro by high molecular weight microtubule associated proteins MAP1A, MAP1B, and MAP2. FEBS Lett. 384(2):147–150. [DOI] [PubMed] [Google Scholar]
  22. Roos, J., Hummel, T., Ng, N., Klämbt, C., and Davis, G. W. (2000). Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth. Neuron26:371–382. [DOI] [PubMed] [Google Scholar]
  23. Sato-Yoshitake, R., Shiomura, Y., Miyasaka, H., and Hirokawa, N. (1989). Microtubule-associated protein 1B: Molecular structure, localization and phosphorylation-dependent expression in developing neurons. Neuron3:229–238. [DOI] [PubMed] [Google Scholar]
  24. Szentagothai, J. (1978). The Ferrier Lecture, 1977. The neuron network of the cerebral cortex: A functional interpretation. Proc. R. Soc. Lond. Ser.: B. Biol. Sci. 201:219–248. [DOI] [PubMed] [Google Scholar]
  25. Tanaka, Y., Kawahata, K., Nakata, T., and Hirokawa, N. (1992). Chronological expression of microtubule-associated proteins (MAPs) in EC cell P19 after neuronal induction by retinoic acid. Brain Res. 596:269–278. [DOI] [PubMed] [Google Scholar]
  26. Yamauchi, E., Titani, K., and Taniguchi, H. (1997). Specific binding of acidic phospholipids to microtubule-associated protein MAP1B regulates its interaction with tubulin. J. Biol. Chem. 272:22948–22953. [DOI] [PubMed] [Google Scholar]
  27. Zervas, M., Edelmann, W., Kucherlapati, R., Wainer, B., and Stanton, P. K. (1995). Impaired maintenance of hippocampal long-term potentiation (LTP) in MAP 1B-deficient mice. Soc. Neurosci. Abstr. 21:1098. [DOI] [PubMed] [Google Scholar]
  28. Zhang, Y. Q., Bailey, A. M., Matthies, H. J., Renden, R. B., Smith, M. A. Speere, S. D., Rubin, G. M., and Broadie, K. (2001). Drosophilia fragile X-related gene regulated the MAPIB homolog Futsch to control synaptic structure and function. Cell107:591–603. [DOI] [PubMed] [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES