Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Jun 15;212(3):669–678. doi: 10.1042/bj2120669

Human platelets are defective in processing of cholera toxin.

R J Hughes, P A Insel
PMCID: PMC1153142  PMID: 6309151

Abstract

Cholera toxin is unable to elevate cyclic AMP levels in intact human platelets despite being very efficacious in this respect in other mammalian cells; in the presence of 0.5 mM-isobutylmethylxanthine, we found that 3-6nM-cholera toxin over 3h at 37 degrees C elevated platelet cyclic AMP from 33 +/- 13 to 39 +/- 12pmol/mg of protein (means +/- S.D.; n = 12). We have investigated the basis for this lack of response. 125I-labelled cholera toxin bound to platelets both saturably and with high affinity (Kd congruent to 60pM; Bmax. congruent to 50fmol/mg of protein). Incubation of platelets with the putative cholera toxin receptor monosialoganglioside GM1 enhanced 125I-labelled cholera toxin binding at least 40-fold but facilitated only a minimal (less than or equal to 3-fold) elevation of platelet cyclic AMP levels. In contrast, dithiothreitol-activated cholera toxin markedly stimulated adenylate cyclase activity in platelet membranes. Platelet cytosol both enhanced stimulation of adenylate cyclase activity by activated cholera toxin (A1 subunit) and supported stimulation by the A1-A2 subunit of cholera toxin. Neither GTP nor NAD+, both necessary for response to cholera toxin, was lacking in intact platelets. However, we found that platelets were unable to cleave cholera toxin to the active A1 subunit (as assessed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis). By contrast, murine S49 lymphoma cells were able to generate the A1 subunit with a time course that closely resembled the kinetics of toxin-mediated cyclic AMP accumulation in these cells. Thus we conclude that human platelets are defective in their ability to process surface-bound cholera toxin. These results indicate that binding of cholera toxin to surface receptors is necessary, but not sufficient, for expression of the toxin effect and the generation of the A1 subunit of the toxin may be rate-limiting for expression of cholera toxin response.

Full text

PDF
669

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheng C. Y., Boettcher B. Effects of cholera toxin and 5'-guanylylimidodiphosphate on human spermatozoal adenylate cyclase activity. Biochem Biophys Res Commun. 1979 Nov 14;91(1):1–9. doi: 10.1016/0006-291x(79)90574-6. [DOI] [PubMed] [Google Scholar]
  2. Cuatrecasas P. Interaction of Vibrio cholerae enterotoxin with cell membranes. Biochemistry. 1973 Aug 28;12(18):3547–3558. doi: 10.1021/bi00742a031. [DOI] [PubMed] [Google Scholar]
  3. Darfler F. J., Hughes R. J., Insel P. A. Characterization of serum-induced alterations in the cyclic AMP pathway in S49 lymphoma cells. J Biol Chem. 1981 Aug 25;256(16):8422–8428. [PubMed] [Google Scholar]
  4. Enomoto K., Gill D. M. Cholera toxin activation of adenylate cyclase. Roles of nucleoside triphosphates and a macromolecular factor in the ADP ribosylation of the GTP-dependent regulatory component. J Biol Chem. 1980 Feb 25;255(4):1252–1258. [PubMed] [Google Scholar]
  5. Enomoto K., Gill D. M. Requirement for guanosine triphosphate in the activation of adenylate cyclase by cholera toxin. J Supramol Struct. 1979;10(1):51–60. doi: 10.1002/jss.400100106. [DOI] [PubMed] [Google Scholar]
  6. Fishman P. H., Atikkan E. E. Mechanism of action of cholera toxin: effect of receptor density and multivalent binding on activation of adenylate cyclase. J Membr Biol. 1980;54(1):51–60. doi: 10.1007/BF01875376. [DOI] [PubMed] [Google Scholar]
  7. Fishman P. H. Internalization and degradation of cholera toxin by cultured cells: relationship to toxin action. J Cell Biol. 1982 Jun;93(3):860–865. doi: 10.1083/jcb.93.3.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fishman P. H., Pacuszka T., Hom B., Moss J. Modification of ganglioside GM1. Effect of lipid moiety on choleragen action. J Biol Chem. 1980 Aug 25;255(16):7657–7664. [PubMed] [Google Scholar]
  9. Fishman P. H. Role of membrane gangliosides in the binding and action of bacterial toxins. J Membr Biol. 1982;69(2):85–97. doi: 10.1007/BF01872268. [DOI] [PubMed] [Google Scholar]
  10. Gill D. M. Mechanism of action of cholera toxin. Adv Cyclic Nucleotide Res. 1977;8:85–118. [PubMed] [Google Scholar]
  11. Haga T., Ross E. M., Anderson H. J., Gilman A. G. Adenylate cyclase permanently uncoupled from hormone receptors in a novel variant of S49 mouse lymphoma cells. Proc Natl Acad Sci U S A. 1977 May;74(5):2016–2020. doi: 10.1073/pnas.74.5.2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hagmann J., Fishman P. H. Inhibitors of protein synthesis block action of cholera toxin. Biochem Biophys Res Commun. 1981 Feb 12;98(3):677–684. doi: 10.1016/0006-291x(81)91167-0. [DOI] [PubMed] [Google Scholar]
  13. Hidaka H., Asano T. Human blood platelet 3': 5'-cyclic nucleotide phosphodiesterase. Isolation of low-Km and high-Km phosphodiesterase. Biochim Biophys Acta. 1976 Apr 8;429(2):485–497. doi: 10.1016/0005-2744(76)90296-5. [DOI] [PubMed] [Google Scholar]
  14. Houslay M. D., Elliott K. R. Is the receptor-mediated endocytosis of cholera toxin A pre-requisite for its activation of adenylate cyclase in intact rat hepatocytes? FEBS Lett. 1981 Jun 15;128(2):289–292. doi: 10.1016/0014-5793(81)80101-9. [DOI] [PubMed] [Google Scholar]
  15. Insel P. A., Koachman A. M. Cytochalasin B enhances hormone and cholera toxin-stimulated cyclic AMP accumulation in S49 lymphoma cells. J Biol Chem. 1982 Aug 25;257(16):9717–9723. [PubMed] [Google Scholar]
  16. Insel P. A., Nirenberg P., Turnbull J., Shattil S. J. Relationships between membrane cholesterol, alpha-adrenergic receptors, and platelet function. Biochemistry. 1978 Nov 28;17(24):5269–5274. doi: 10.1021/bi00617a029. [DOI] [PubMed] [Google Scholar]
  17. Jakobs K. H., Schultz G. Different inhibitory effect of adrenaline on platelet adenylate cyclase in the presence of GTP plus cholera toxin and of stable GTP analogues. Naunyn Schmiedebergs Arch Pharmacol. 1979 Dec;310(2):121–127. doi: 10.1007/BF00500276. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Moss J., Vaughan M. Activation of adenylate cyclase by choleragen. Annu Rev Biochem. 1979;48:581–600. doi: 10.1146/annurev.bi.48.070179.003053. [DOI] [PubMed] [Google Scholar]
  20. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  21. Schleifer L. S., Kahn R. A., Hanski E., Northup J. K., Sternweis P. C., Gilman A. G. Requirements for cholera toxin-dependent ADP-ribosylation of the purified regulatory component of adenylate cyclase. J Biol Chem. 1982 Jan 10;257(1):20–23. [PubMed] [Google Scholar]
  22. Snyder P. D., Jr, Desnick R. J., Krivit W. The glycosphingolipids and glycosyl hydrolases of human blood platelets. Biochem Biophys Res Commun. 1972 Mar 10;46(5):1857–1865. doi: 10.1016/0006-291x(72)90062-9. [DOI] [PubMed] [Google Scholar]
  23. Steer M. L., Wood A. Regulation of human platelet adenylate cyclase by epinephrine, prostaglandin E1, and guanine nucleotides. Evidence for separate guanine nucleotide sites mediating stimulation and inhibition. J Biol Chem. 1979 Nov 10;254(21):10791–10797. [PubMed] [Google Scholar]
  24. Stengel D., Hanoune J. The catalytic unit of ram sperm adenylate cyclase can be activated through the guanine nucleotide regulatory component and prostaglandin receptors of human erythrocyte. J Biol Chem. 1981 Jun 10;256(11):5394–5398. [PubMed] [Google Scholar]
  25. Tomasi M., Montecucco C. Lipid insertion of cholera toxin after binding to GM1-containing liposomes. J Biol Chem. 1981 Nov 10;256(21):11177–11181. [PubMed] [Google Scholar]
  26. Wisnieski B. J., Bramhall J. S. Photolabelling of cholera toxin subunits during membrane penetration. Nature. 1981 Jan 22;289(5795):319–321. doi: 10.1038/289319a0. [DOI] [PubMed] [Google Scholar]
  27. van Heyningen S. Cholera toxin. Biosci Rep. 1982 Mar;2(3):135–146. doi: 10.1007/BF01116376. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES