Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Sep 15;487(Pt 3):797–811. doi: 10.1113/jphysiol.1995.sp020919

Roles of arachidonic acid, lipoxygenases and phosphatases in calcium-dependent modulation of M-current in bullfrog sympathetic neurons.

S P Yu 1
PMCID: PMC1156664  PMID: 8544140

Abstract

1. M-current (IM) is regulated by intracellular free Ca2+ ([Ca2+]i). Suppression and overrecovery of IM induced by muscarine and luteinizing-hormone releasing hormone (LHRH) are also regulated by [Ca2+]i. The role of the arachidonic acid (AA) pathway in the Ca(2+)-dependent modulation of IM was investigated using whole-cell voltage clamp and intracellular perfusion in dissociated bullfrog sympathetic B neurons. 2. Quinacrine (10-20 microM) and 4-bromophenacyl bromide (4-BPB; 4-10 microM), the inhibitors of phospholipase A2, blocked the enhancement of IM evoked by raising [Ca2+]i. 3. AA (6-120 microM) increased IM by about 50% of the control current in a Ca(2+)-dependent manner. 4. Enhancements of IM by Ca2+ and AA were blocked by the lipoxygenase (LO) inhibitors nordihydroguaiaretic acid (NDGA; 1-5 microM) and 5,8,11-eicosatrynoic acid (ETI; 10 microM). The cyclo-oxygenase inhibitor indomethacin (10 microM) had no effect. 5. Enhancement of IM by Ca2+ was abolished by the selective 12-LO inhibitors baicalein (1-2 microM) and 15(S)-hydroxy-5-cis-8-cis-11-cis-13-trans-eicosatetraenoic acid (15-HETE; 6.5 microM). A 12-LO product, 2(S)-hydroxy-5-cis-8-cis-10-trans-14-cis- eicosatetraenoic acid (12-HETE; 13-20 microM), increased IM without Ca2+ requirement. 6. Enhancement of IM by Ca2+ was not affected by the selective 5-LO inhibitors AA-861 (10 microM), 5,6-dehydroarachidonic acid (5,6-DAA, 10 microM) and L-651,896 (10 microM). The 5-LO metabolites leukotriene C4 (1.5-8 microM) and leukotriene B4 (1.5-5 microM) showed no obvious effect on IM. 7. NDGA alone inhibited IM with an IC50 of 0.73 microM at 120 nM Cai(2+). 8. NDGA did not affect suppression of IM by muscarine or LHRH; however, overrecovery of IM upon removing these agonists was totally eliminated by 1 microM NDGA. 9. Inhibitors of phosphatases, calyculin A (0.1 microM) and okadaic acid (1 microM), completely abolished overrecovery of IM. Calyculin A also blocked the Ca(2+)-induced IM enhancement. 10. It is suggested that Ca2+ enhances IM by stimulating the AA metabolic pathway. Dephosphorylation probably upregulates IM. Overrecovery of IM is probably a result of stimulation of the LO pathway and phosphatases by increased [Ca2+]i.

Full text

PDF
797

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. R., Brown D. A., Constanti A. M-currents and other potassium currents in bullfrog sympathetic neurones. J Physiol. 1982 Sep;330:537–572. doi: 10.1113/jphysiol.1982.sp014357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akasu T., Tokimasa T. Cellular metabolism regulating H and M currents in bullfrog sympathetic ganglia. Can J Physiol Pharmacol. 1992;70 (Suppl):S51–S55. doi: 10.1139/y92-243. [DOI] [PubMed] [Google Scholar]
  3. Armstrong D. L. Calcium channel regulation by calcineurin, a Ca2+-activated phosphatase in mammalian brain. Trends Neurosci. 1989 Mar;12(3):117–122. doi: 10.1016/0166-2236(89)90168-9. [DOI] [PubMed] [Google Scholar]
  4. Baba A., Sakuma S., Okamoto H., Inoue T., Iwata H. Calcium induces membrane translocation of 12-lipoxygenase in rat platelets. J Biol Chem. 1989 Sep 25;264(27):15790–15795. [PubMed] [Google Scholar]
  5. Bosma M. M., Bernheim L., Leibowitz M. D., Pfaffinger P. J., Hille B. Modulation of M current in frog sympathetic ganglion cells. Soc Gen Physiol Ser. 1990;45:43–59. [PubMed] [Google Scholar]
  6. Brown D. A., Adams P. R. Effects of phorbol dibutyrate on M currents and M current inhibition in bullfrog sympathetic neurons. Cell Mol Neurobiol. 1987 Sep;7(3):255–269. doi: 10.1007/BF00711303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Buckley B. J., Barchowsky A., Dolor R. J., Whorton A. R. Regulation of arachidonic acid release in vascular endothelium. Ca(2+)-dependent and -independent pathways. Biochem J. 1991 Dec 1;280(Pt 2):281–287. doi: 10.1042/bj2800281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Béhé P., Sandmeier K., Meves H. The effect of arachidonic acid on the M current of NG108-15 neuroblastoma x glioma hybrid cells. Pflugers Arch. 1992 Nov;422(2):120–128. doi: 10.1007/BF00370411. [DOI] [PubMed] [Google Scholar]
  9. Carlen P. L., Gurevich N., Wu P. H., Su W. G., Corey E. J., Pace-Asciak C. R. Actions of arachidonic acid and hepoxilin A3 on mammalian hippocampal CA1 neurons. Brain Res. 1989 Sep 11;497(1):171–176. doi: 10.1016/0006-8993(89)90984-0. [DOI] [PubMed] [Google Scholar]
  10. Caulfield M. P., Robbins J., Sim J. A., Brown D. A., Mac Neil S., Blackburn G. M. The naphthalenesulphonamide calmodulin antagonist W7 and its 5-iodo-1-C8 analogue inhibit potassium and calcium currents in NG108-15 neuroblastoma x glioma cells in a manner possibly unrelated to their antagonism of calmodulin. Neurosci Lett. 1991 Apr 15;125(1):57–61. doi: 10.1016/0304-3940(91)90130-l. [DOI] [PubMed] [Google Scholar]
  11. Chen H., Smith P. A. M-currents in frog sympathetic ganglion cells: manipulation of membrane phosphorylation. Br J Pharmacol. 1992 Feb;105(2):329–334. doi: 10.1111/j.1476-5381.1992.tb14254.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Clapp L. H., Sims S. M., Singer J. J., Walsh J. V., Jr Role for diacylglycerol in mediating the actions of ACh on M-current in gastric smooth muscle cells. Am J Physiol. 1992 Dec;263(6 Pt 1):C1274–C1281. doi: 10.1152/ajpcell.1992.263.6.C1274. [DOI] [PubMed] [Google Scholar]
  13. Dragan Y. P., Ellis E. F. Effect of adenine nucleotides on cyclooxygenase and lipoxygenase enzyme products of arachidonic acid in human platelets. Biochem Pharmacol. 1990 Jan 1;39(1):27–32. doi: 10.1016/0006-2952(90)90644-z. [DOI] [PubMed] [Google Scholar]
  14. Gronich J. H., Bonventre J. V., Nemenoff R. A. Purification of a high-molecular-mass form of phospholipase A2 from rat kidney activated at physiological calcium concentrations. Biochem J. 1990 Oct 1;271(1):37–43. doi: 10.1042/bj2710037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hirano Y., Abe S., Sawanobori T., Hiraoka M. Arachidonic acid induced increase in intracellular free calcium in guinea-pig hepatocytes. Jpn J Physiol. 1991;41(2):327–332. doi: 10.2170/jjphysiol.41.327. [DOI] [PubMed] [Google Scholar]
  16. Hua S. Y., Nohmi M., Kuba K. Characteristics of Ca2+ release induced by Ca2+ influx in cultured bullfrog sympathetic neurones. J Physiol. 1993 May;464:245–272. doi: 10.1113/jphysiol.1993.sp019633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ishihara H., Martin B. L., Brautigan D. L., Karaki H., Ozaki H., Kato Y., Fusetani N., Watabe S., Hashimoto K., Uemura D. Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem Biophys Res Commun. 1989 Mar 31;159(3):871–877. doi: 10.1016/0006-291x(89)92189-x. [DOI] [PubMed] [Google Scholar]
  18. Kennedy M. B. Regulation of neuronal function by calcium. Trends Neurosci. 1989 Nov;12(11):417–420. doi: 10.1016/0166-2236(89)90089-1. [DOI] [PubMed] [Google Scholar]
  19. Keyser D. O., Alger B. E. Arachidonic acid modulates hippocampal calcium current via protein kinase C and oxygen radicals. Neuron. 1990 Oct;5(4):545–553. doi: 10.1016/0896-6273(90)90092-t. [DOI] [PubMed] [Google Scholar]
  20. Kim D., Lewis D. L., Graziadei L., Neer E. J., Bar-Sagi D., Clapham D. E. G-protein beta gamma-subunits activate the cardiac muscarinic K+-channel via phospholipase A2. Nature. 1989 Feb 9;337(6207):557–560. doi: 10.1038/337557a0. [DOI] [PubMed] [Google Scholar]
  21. Korn S. J., Horn R. Nordihydroguaiaretic acid inhibits voltage-activated Ca2+ currents independently of lipoxygenase inhibition. Mol Pharmacol. 1990 Oct;38(4):524–530. [PubMed] [Google Scholar]
  22. Kurachi Y., Ito H., Sugimoto T., Shimizu T., Miki I., Ui M. Arachidonic acid metabolites as intracellular modulators of the G protein-gated cardiac K+ channel. Nature. 1989 Feb 9;337(6207):555–557. doi: 10.1038/337555a0. [DOI] [PubMed] [Google Scholar]
  23. Marrion N. V., Adams P. R. Release of intracellular calcium and modulation of membrane currents by caffeine in bull-frog sympathetic neurones. J Physiol. 1992 Jan;445:515–535. doi: 10.1113/jphysiol.1992.sp018937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marrion N. V. M-current suppression by agonist and phorbol ester in bullfrog sympathetic neurons. Pflugers Arch. 1994 Feb;426(3-4):296–303. doi: 10.1007/BF00374785. [DOI] [PubMed] [Google Scholar]
  25. Marrion N. V., Zucker R. S., Marsh S. J., Adams P. R. Modulation of M-current by intracellular Ca2+. Neuron. 1991 Apr;6(4):533–545. doi: 10.1016/0896-6273(91)90056-6. [DOI] [PubMed] [Google Scholar]
  26. Ordway R. W., Singer J. J., Walsh J. V., Jr Direct regulation of ion channels by fatty acids. Trends Neurosci. 1991 Mar;14(3):96–100. doi: 10.1016/0166-2236(91)90069-7. [DOI] [PubMed] [Google Scholar]
  27. Peppelenbosch M. P., Tertoolen L. G., den Hertog J., de Laat S. W. Epidermal growth factor activates calcium channels by phospholipase A2/5-lipoxygenase-mediated leukotriene C4 production. Cell. 1992 Apr 17;69(2):295–303. doi: 10.1016/0092-8674(92)90410-e. [DOI] [PubMed] [Google Scholar]
  28. Pfaffinger P. J., Leibowitz M. D., Subers E. M., Nathanson N. M., Almers W., Hille B. Agonists that suppress M-current elicit phosphoinositide turnover and Ca2+ transients, but these events do not explain M-current suppression. Neuron. 1988 Aug;1(6):477–484. doi: 10.1016/0896-6273(88)90178-x. [DOI] [PubMed] [Google Scholar]
  29. Pfaffinger P. Muscarine and t-LHRH suppress M-current by activating an IAP-insensitive G-protein. J Neurosci. 1988 Sep;8(9):3343–3353. doi: 10.1523/JNEUROSCI.08-09-03343.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Piomelli D., Shapiro E., Feinmark S. J., Schwartz J. H. Metabolites of arachidonic acid in the nervous system of Aplysia: possible mediators of synaptic modulation. J Neurosci. 1987 Nov;7(11):3675–3686. doi: 10.1523/JNEUROSCI.07-11-03675.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pueringer R. J., Bahns C. C., Monick M. M., Hunninghake G. W. A23187 stimulates translocation of 5-lipoxygenase from cytosol to membrane in human alveolar macrophages. Am J Physiol. 1992 Apr;262(4 Pt 1):L454–L458. doi: 10.1152/ajplung.1992.262.4.L454. [DOI] [PubMed] [Google Scholar]
  32. Randriamampita C., Trautmann A. Arachidonic acid activates Ca2+ extrusion in macrophages. J Biol Chem. 1990 Oct 25;265(30):18059–18062. [PubMed] [Google Scholar]
  33. Schmitt H., Meves H. Protein kinase C as mediator of arachidonic acid-induced decrease of neuronal M current. Pflugers Arch. 1993 Oct;425(1-2):134–139. doi: 10.1007/BF00374513. [DOI] [PubMed] [Google Scholar]
  34. Schweitzer P., Madamba S., Champagnat J., Siggins G. R. Somatostatin inhibition of hippocampal CA1 pyramidal neurons: mediation by arachidonic acid and its metabolites. J Neurosci. 1993 May;13(5):2033–2049. doi: 10.1523/JNEUROSCI.13-05-02033.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sekiya F., Takagi J., Sasaki K., Kawajiri K., Kobayashi Y., Sato F., Saito Y. Feedback regulation of platelet function by 12S-hydroxyeicosatetraenoic acid: inhibition of arachidonic acid liberation from phospholipids. Biochim Biophys Acta. 1990 May 1;1044(1):165–168. doi: 10.1016/0005-2760(90)90232-m. [DOI] [PubMed] [Google Scholar]
  36. Van der Donk E. M., Dubois G. R., Verhagen J., Veldink G. A., Vliegenthart J. F. Improved purification of 12-lipoxygenase from rat basophilic leukemia cells and conditions for optimal enzyme activity. Biochim Biophys Acta. 1991 Aug 6;1074(3):443–447. doi: 10.1016/0304-4165(91)90098-2. [DOI] [PubMed] [Google Scholar]
  37. Waite M. Approaches to the study of mammalian cellular phospholipases. J Lipid Res. 1985 Dec;26(12):1379–1388. [PubMed] [Google Scholar]
  38. Yu S. P., O'Malley D. M., Adams P. R. Regulation of M current by intracellular calcium in bullfrog sympathetic ganglion neurons. J Neurosci. 1994 Jun;14(6):3487–3499. doi: 10.1523/JNEUROSCI.14-06-03487.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES