Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 1985 Jun;5(1-2):47–63. doi: 10.1007/BF00711085

A possible mechanism of morphometric changes in dendritic spines induced by stimulation

E Fifková 1
PMCID: PMC11572857  PMID: 2992787

Abstract

  1. A number of experimental procedures which induce increased electrical activity (including long-term potentiation) were shown to be accompanied by morphometric changes in dendritic spines. These changes include an enlargement of the spine head, shortening and widening of the spine stalk, and an increase in the length of synaptic apposition.

  2. A possible mechanism is suggested which takes into account specific cytological features of the spine and the existence of contractile proteins in neurons. Dendritic spines are defined as special domains of the neuron which have a unique organization of the cytoplasm. Actin filaments form a very dense network in the spine head, and they are longitudinally organized within the spine stalk. Spines were also shown to contain myosin and other actin-regulatory proteins. The high density of the actin network could explain the characteristic absence of the cytoplasmic organelles from dendritic spines.

  3. In analogy with other cells, such an actin organization indicates low levels of free cytosolic calcium. Even in the resting state, calcium levels may be unevenly distributed through the neuron, being lowest within the subplasmalemmal region. Due to the high surface-to-volume ratio in spines, the cytoplasm is formed mostly by the subplasmalemmal region. The spine apparatus or the smooth endoplasmic reticulum, which is recognized as a calcium-sequestering site in spines, may also contribute to the low calcium levels there.

  4. However, when in the stimulated spine the voltage-dependent calcium channels open, then, given the spine's high surface-to-volume ratio, the concentration of calcium may very quickly attain levels that will activate the actin-regulatory proteins and myosin and thus trigger the chain of events leading to the enlargement of the spine head and to the contraction (i.e., widening and shortening) of the spine stalk. The increased free cytosolic calcium may also activate the protein-producing system localized at the base of the spine, which, under certain conditions, could stabilize the morphometric changes of the spine.

Key words: dendritic spines, synaptic plasticity, spine apparatus, calcium, actin filaments, spine apparatus as a calcium-sequestering organelle, contractile proteins may underlie synaptic plasticity

References

  1. Anderson, C. L., and Fifkova, E. (1982). Morphological changes in the dentate molecular layer accompanying long-term potentiation.Soc. Neurosci. Abstr.8279. [Google Scholar]
  2. Bamburg, J. R., Harris, H. E., and Weeds, A. G. (1980). Partial purification and characterization of an actin depolymerizing factor from brain.FEBS Lett.121178–182. [DOI] [PubMed] [Google Scholar]
  3. Baudry, M., Oliver, M., Creager, R., Wieraszko, A., and Lynch, G. (1980). Increase in glutamate receptors following repetitive electrical stimulation in hippocampal slices.Life Sci.27325–330. [DOI] [PubMed] [Google Scholar]
  4. Berl, S., Chou, M., and Mytilineau, C. (1983). Actin-stimulated myosin Mg2+-ATPase inhibition by brain protein.J. Neurochem.401397–1405. [DOI] [PubMed] [Google Scholar]
  5. Blikstad, I., Sundkvist, I., and Eriksson, S. (1980). Isolation and characterization of profilactin and profilin from calf thymus and brain.Eur. J. Biochem.105425–433. [DOI] [PubMed] [Google Scholar]
  6. Bliss, T. V. P. (1979). Synaptic plasticity in the hippocampus.Trends Neurosci.242–46. [Google Scholar]
  7. Bliss, T. V. P., and Dolphin, A. C. (1982). What is the mechanism of long-term potentiation in the hippocampus?Trends Neurosci.5289–290. [Google Scholar]
  8. Bradley, P., and Horn, G. (1979). Neuronal plasticity in the chick brain: Morphological effects of visual experience on neurones in hyperstriatum accessorium.Brain Res.162148–153. [DOI] [PubMed] [Google Scholar]
  9. Brandon, J. G., and Coss, R. G. (1982). Rapid dendritic spine stem shortening during one-trial learning: The honeybee's first orientation flight.Brain Res.25251–61. [DOI] [PubMed] [Google Scholar]
  10. Brochat, K. O., Stidwill, R. P., and Burgess, D. R. (1983). Phosphorylation controls brush border motility by regulating myosin structure and association with the cytoskeleton.Cell35561–571. [DOI] [PubMed] [Google Scholar]
  11. Brown, M. W., and Horn, G. (1979). Neuronal plasticity in the chick brain: Electrophysiological effects of visual experience on hyperstriatal neurons.Brain Res.162142–147. [DOI] [PubMed] [Google Scholar]
  12. Burgess, J. W., and Coss, R. G. (1982). Effects of chronic crowding stress on midbrain development: Changes in dendritic spine density and morphology.Dev. Psychobiol.15461–470. [DOI] [PubMed] [Google Scholar]
  13. Burgess, J. W., and Coss, R. G. (1983). Rapid effect of biologically relevant stimulation on tectal neurons: Changes in dendritic spine morphology after nine minutes are retained for twenty-four hours.Brain Res.266217–233. [DOI] [PubMed] [Google Scholar]
  14. Burgoyne, R. D., Gray, E. G., and Barron, J. (1983). Cytochemical localization of calcium in the dendritic spine apparatus of the cerebral cortex and at synaptic sites in the cerebellar cortex.J. Anat.136634. [Google Scholar]
  15. Caceres, A., Payne, M. R., Binder, L. I., and Steward, O. (1983a). Immunocytochemical localization of actin and microtubule-associated protein MAP 2 in dendritic spines.Proc. Natl. Acad. Sci.801738–1742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Caceres, A., Bender, P., Snavely, L., Rebhun, L. I., and Steward, O. (1983b). Distribution and subcellula localization of calmodulin in adult and developing brain tissue.Neuroscience10449–461. [DOI] [PubMed] [Google Scholar]
  17. Caceres, A., Binder, L. I., Payne, M. R., Bender, P., Rebhun, L., and Steward, O. (1984). Differential subcellular localization of tubulin and microtubule-associated protein MAP 2 in brain tissue as revealed by immunocytochemistry with monoclonal hybridoma antibodies.J. Neurosci.4394–410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Carlin, R. K., Bartelt, D. C., and Siekevitz, P. (1983). Identification of fodrin as a major calmodulin-binding protein in postsynaptic density preparations.J. Cell Biol.96443–448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Carlsson, L., Nystrom, L. E., Sundkvist, I., Markey, F., and Lindberg, I. (1977). Actin polymerizability is influenced by profilin, a low molecular weight protein in nonmuscle cells.J. Mol. Biol.115465–483. [DOI] [PubMed] [Google Scholar]
  20. Chang, C. M., and Goldman, R. D. (1973). The localization of actin-like fibers in cultured neuroblastoma cells are revealed by heavy meromyosin binding.J. Cell Biol.57867–874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Condeelis, J. (1983). Rheological properties of cytoplasm: Significance for the organization of spatial information and movement. InSpatial Organization of Eukaryotic Cells, Modern Cell Biology (McIntosh, J. R., Ed.),Vol. 2, Alan R. Liss, New York, pp. 225–240. [Google Scholar]
  22. Coss, R. G., and Globus, A. (1978). Spine stems on tectal interneurons in jewel fish are shortened by social stimulation.Science200787–790. [DOI] [PubMed] [Google Scholar]
  23. Coss, R. G., Brandon, J. G., and Globus, A. (1980). Changes in morphology of dendritic spines on honeybee calycal interneurons associated with cumulative nursing and foraging experiences.Brain Res.19249–59. [DOI] [PubMed] [Google Scholar]
  24. Craig, S. W., and Pollard, T. D. (1982). Actin-binding proteins.Trends Biochem. Sci.788–92. [Google Scholar]
  25. Crick, F. (1982). Do dendritic spines twitch?Trends Neurosci.544–46. [Google Scholar]
  26. Cumming, R., and Burgoyne, R. (1983). Compartmentalization of neuronal cytoskeletal proteins.Biosci Rep.3997–1006. [DOI] [PubMed] [Google Scholar]
  27. Davis, J. Q., and Bennett, V. (1984). Brain ankyrin.J. Biol. Chem.2591874–1881. [PubMed] [Google Scholar]
  28. Desmond, N. L., and Levy, W. B. (1983). Synaptic correlates of associative potentiation/depression: An ultrastructural study in the hippocampus.Brain Res.26521–30. [DOI] [PubMed] [Google Scholar]
  29. Diamond, J., Gray, E. G., and Yasargil, G. M. (1970). The function of the dendritic spine: A hypothesis. InExcitatory Synaptic Mechanisms (Andersen, P., and Jansen, J. K. S., Eds.), Universitetsforlaget, Oslo, pp. 213–222. [Google Scholar]
  30. Drenckhahn, D., and Kaiser, H. W. (1983). Evidence for the concentration of F-actin and myosin in synapses and in the plasmalemmal zone of axons.Eur. J. Cell Biol.31235–240. [PubMed] [Google Scholar]
  31. Eccles, J. C. (1983). Calcium in long-term potentiation as a model for memory.Neuroscience101071–1081. [DOI] [PubMed] [Google Scholar]
  32. Ellisman, M. H., and Porter, K. R. (1983). Introduction to the cytoskeleton. InNeurofilaments (Marotta, C. A., Ed.), University of Minnesota Press, Minneapolis, pp. 3–26. [Google Scholar]
  33. Fifková, E. (1974). Plastic and degenerative changes in visual centers. InAdvances in Psychobiology (Newton, G., and Riesen, A. H., Eds.), Wiley and Sons, New York, pp. 59–131. [PubMed] [Google Scholar]
  34. Fifková, E. (1982). Synaptic hypertrophy in the dentate fascia of the hippocampus. Symposium: Recent Achievements in Restorative Neurology, Houston, Texas, October, p. 23 (abstr.).
  35. Fifková, E. (1985). Synaptic hypertrophy in the dentate fascia of the hippocampus. InRecent Achievements in Restorative Neurology (Dimitrijevic, M., and Eccles, J. C., Eds.), S. Karger, Basel (in press). [Google Scholar]
  36. Fifková, E., and Anderson, C. L. (1981). Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer.Exp. Neurol.74621–627. [DOI] [PubMed] [Google Scholar]
  37. Fifková, E., and Delay, R. J. (1982). Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity.J. Cell. Biol.95345–350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Fifková, E., and Van Harreveld, A. (1977). Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area.J. Neurocytol.6211–230. [DOI] [PubMed] [Google Scholar]
  39. Fifková, E., Anderson, C. L., Young, S. J., and Van Harreveld, A. (1982). Effect of anisomycin on stimulation-induced changes in dendritic spines of the dentate granule cells.J. Neurocytol.11183–210. [DOI] [PubMed] [Google Scholar]
  40. Fifková, E., Markham, J. A., and Delay, R. J. (1983). Calcium in the spine apparatus of dendritic spines in the dentate molecular layer.Brain Res.266163–168. [DOI] [PubMed] [Google Scholar]
  41. Fifková, E., Markham, J. A., and Cullen-Dockstader, K. (1984). Association of the actin lattice with cytoplasmic organelles and the plasma membrane in dendrites and dendritic spines.Soc. Neurosci. Abstr.10425. [Google Scholar]
  42. Flock, A., Cheung, H. C., Flock, B., and Utter, G. (1981). Three sets of actin filaments in sensory cells of the inner ear.J. Neurocytol.10133–147. [DOI] [PubMed] [Google Scholar]
  43. Glenney, J. R., and Glenney, P. (1983). Fodrin is the general spectrin-like protein found in most cells whereas spectrin and the TW protein have a restricted distribution.Cell34503–512. [DOI] [PubMed] [Google Scholar]
  44. Goodman, S. R., Casoria, C. A., Coleman, D. B., and Zagon, I. S. (1984). Identification and location of brain protein 4.1.Science2241433–1436. [DOI] [PubMed] [Google Scholar]
  45. Grab, D. J., Berzins, K., Cohen, R. S., and Siekevitz, P. (1979). Presence of calmodulin in postsynaptic densities isolated from canine cerebral cortex.J. Biol. Chem.2548690–8696. [PubMed] [Google Scholar]
  46. Gray, E. G. (1959). Axo-somatic and axo-dendritic synapses in the cerebral cortex: An electron microscope study.J. Anat.93420–433. [PMC free article] [PubMed] [Google Scholar]
  47. Gray, E. G. (1982). Rehabilitating the dendritic spine.Trends Neurosci.55–6. [Google Scholar]
  48. Gray, E. G., Westrum, L. E., Burgoyne, R. D., and Barron, J. (1982). Synaptic organization and neuron microtubule distribution.Cell Tissue Res.226579–588. [DOI] [PubMed] [Google Scholar]
  49. Greenough, W. T., and Chang, F.-L. F. (1983). Short and long term synaptic structural correlates of activity and efficacy change in rat hippocampal slices.Soc. Neurosci. Abstr.954. [Google Scholar]
  50. Griffith, L. M., and Pollard, T. D. (1982). The interaction of actin filaments with microtubules and microtubule associated proteins.J. Biol. Chem.2579143–9151. [PubMed] [Google Scholar]
  51. Herman, I. M., and Pollard, T. D. (1981). Electron microscopic localization of cytoplasmic myosin with ferritin-labeled antibodies.J. Cell Biol.88346–351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Hirokawa, N., and Tilney, L. G. (1982). Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear.J. Cell Biol.95249–261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Isenberg, G., and Small, J. V. (1978). Filamentous actin, 100 A filaments and microtubules in neuroblastoma cells.Cytobiology16326–344. [Google Scholar]
  54. Isenberg, G., Ohnheiser, R., and Maruta, H. (1983). “Cap 90,” a 90-kDa Ca2+-dependent F-actin-capping protein from vertebrate brain.FEBS Lett.163225–229. [DOI] [PubMed] [Google Scholar]
  55. Ishikawa, H., Bischoff, R., and Holtzer, H. (1969). Formation of arrowhead complexes with heavy meromyosin in a variety of cell types.J. Cell Biol.43312–328. [PMC free article] [PubMed] [Google Scholar]
  56. Jack, J. J. B., Noble, D., and Tsien, R. W. (1975).Electric Current Flow in Excitable Cells, Oxford University Press, London, pp. 218–223. [Google Scholar]
  57. Katsumaru, H., Murakami, F., and Tsukahara, K. (1982). Actin filaments in dendritic spines of the red nucleus neurons demonstrated by immunoferritin localization and heavy meromyosin binding.Biomed. Res.3337–340. [Google Scholar]
  58. Kirschner, M. W. (1980). Implications of treadmilling for the stability and polarity of actin and tubulin polymersin vivo.J. Cell Biol.86330–334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Koch, C., and Poggio, T. (1983). A theoretical analysis of electrical properties of spines.Proc. R. Soc. Lond. B218455–477. [DOI] [PubMed] [Google Scholar]
  60. Landis, S. C. (1983). Neuronal growth cones.Annu. Rev. Physiol.45567–580. [DOI] [PubMed] [Google Scholar]
  61. Lazarides, E., and Nelson, W. J. (1982). Expression of spectrin in nonerythroid cells.Cell31505–508. [DOI] [PubMed] [Google Scholar]
  62. LeBeux, Y. J., and Willemot, J. (1975a). An ultrastructural study of the microfilaments in rat brain by means of heavy meromyosin labeling. I. The perikaryon, the dendrites and the axon.Cell Tissue Res.1601–36. [DOI] [PubMed] [Google Scholar]
  63. LeBeux, Y. J., and Willemot, J. (1975b). An ultrastructural study of the microfilaments in rat brain by means of E-PTA staining and heavy meromyosin labeling. II. The synapses.Cell Tissue Res.16037–68. [DOI] [PubMed] [Google Scholar]
  64. Lee, K. S., Schottler, F., Oliver, M., and Lynch, G. (1980). Brief bursts of high frequency stimulation produce two types of structural changes in the hippocampus.J. Neurophysiol.44247–258. [DOI] [PubMed] [Google Scholar]
  65. Levine, J., and Willard, M. (1981). Fodrin: Axonally transported polypeptides associated with the internal periphery of many cells.J. Cell Biol.90631–643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Loor, F. (1981). Cell surface-cell cortex transmembranous interactions with special reference to lymphocyte functions. InCytoskeletal Elements and Plasma Membrane Organization (Poste, G., and Nicolson, G. L., Eds.), North-Holland, Amsterdam, pp. 253-335.
  67. Lynch, G., and Baudry, M. (1984). The biochemistry of memory: A new and specific hypothesis.Science2241057–1063. [DOI] [PubMed] [Google Scholar]
  68. Mangeat, P. H., and Burridge, K. (1984). Immunoprecipitation of nonerythrocyte spectrin within live cells following microinjection of specific antibodies: Relation to cytoskeletal structures.J. Cell Biol.981363–1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Markham, J. A., Fifková, E., and Cullen-Dockstader, K. (1984). Organization of actin filaments in developing dendritic spines of the rat.Soc. Neurosci. Abstr.10425. [Google Scholar]
  70. Matsudaira, P. T., and Burgess, D. R. (1982). Organization of the cross-filament in intestinal microvilli.J. Cell Biol.92657–664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Matus, A., Ackerman, M., Pehling, G., Byers, H. R., and Fjuiwara, K. (1982). High actin concentrations in brain dendritic spines and postsynaptic densities.Proc. Natl. Acad. Sci.797590–7594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Maupin, P., and Pollard, T. D. (1983). Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation.J. Cell Biol.9651–61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Maupin-Szamier, P., and Pollard, T. D. (1978). Actin filament destruction by osmium tetroxide.J. Cell Biol.77837–852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. McNaughton, B. L. (1983). Activity dependent modulation of hippocampal synaptic efficacy: Some implications for memory processes. InNeurobiology of the Hippocampus (Seifert, W., Ed.), Academic Press, New York, pp. 233–252. [Google Scholar]
  75. Metuzals, J., and Mushynski, W. (1974). Electron microscope and experimental investigations of the neurofilamentous network in Deiter's neurons. Relationship with the cell surface and nuclear pores.J. Cell Biol.61701–722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Nelson, W. J., Granger, B. L., and Lazarides, E. (1983). Avian lens spectrin: Subunit composition compared with erythrocyte and brain spectrin.J. Cell Biol.971271–1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Pardee, J. D., and Spudich, J. A. (1983). Mechanism of K+-induced actin assembly.J. Cell Biol.93648–654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Pollard, T. D. (1981). Cytoplasmic contractile proteins.J. Cell Biol.91156s-165s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Pollard, T. D., Aebi, U., Cooper, J. A., Fowler, W. E., and Tseng, P. (1982). Actin structure, polymerization, and gelation.Cold Spring Harbor Symp. Quant. Biol.46513–524. [DOI] [PubMed] [Google Scholar]
  80. Racine, R. J., Wilson, D. A., Gingel, R., and Sunderland, D. (1984). Long-term potentiation in the inferior and vestibular nuclei.Soc. Neurosci. Abstr.1079. [Google Scholar]
  81. Rall, W. (1974). Dendritic spines, synaptic potency and neuronal plasticity. InCellular Mechanisms Subserving Changes in Neuronal Acticity (Woody, C. D., Brown, K. D., Crow, T. J., and Knispel, J. D., Eds.), Brain Research Institute, University of California, Los Angeles. [Google Scholar]
  82. Rall, W. (1978). Dendritic spines and synaptic potency. InStudies in Neurophysiology (Porter, R., Ed.), Cambridge University Press, Cambridge, pp. 203–209. [Google Scholar]
  83. Sastry, R. B., and Goh, W. J. (1984). Long-lasting potentiation in the hippocampus is not due to an increase of glutamate receptors.Life Sci.341497–1501. [DOI] [PubMed] [Google Scholar]
  84. Shepherd, G. M. (1979).The Synaptic Organization of the Brain, Oxford University Press, New York and Oxford. [Google Scholar]
  85. Siman, R., Baudry, M., and Lynch, G. (1984). Brain fodrin: Substrate for calpain I, an endogenous calcium activated protease.Proc. Natl. Acad. Sci.813572–3576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Spudich, J. A., Pardee, J. D., Simpson, P. A., Yamamoto, E. R., Kuczmarski, E. R., and Stryer, L. (1982). Actin and myosin: Control of filament assembly.Phil. Trans. R. Soc. Lond. B299247–261. [DOI] [PubMed] [Google Scholar]
  87. Steward, O., and Levy, W. B. (1982). Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus.J. Neurosci.2284–291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Stossel, T. P. (1982). The structure of the cortical cytoplasm.Phil. Trans. R. Soc. Lond. B299275–289. [DOI] [PubMed] [Google Scholar]
  89. Stossel, T. P. (1983). The spatial organization of cortical cytoplasm in macrophages. InSpatial Organization of Eukaryotic Cells, Modern Cell Biology, Vol. 2 (McIntosh, J. R., Ed.), Alan R. Liss, New York, pp. 203–223. [Google Scholar]
  90. Tilney, L. G. (1983). Interaction between actin filaments and membranes give spatial organization to the cell. InSpatial Organization of Eukaryotic Cells, Modern Cell Biology, Vol. 2 (McIntosh, J. R., Ed.), Alan R. Liss, New York, pp. 163–199. [Google Scholar]
  91. Trifaró, J. J. (1978). Contractile proteins in tissues originating in the neural crest.Neuroscience31–24. [Google Scholar]
  92. Turner, R. W., Baimbridge, K. G., and Miller, J. J. (1982). Calcium-induced long-term potentiation in the hippocampus.Neuroscience71411–1416. [DOI] [PubMed] [Google Scholar]
  93. Walz, B. (1982a). Ca2+-sequestering smooth endoplasmic reticulum in an invertebrate photoreceptor. I. Intracellular topography as revealed by OsFeCN staining andin situ Ca accumulation.J. Cell Biol.93839–848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Walz, B. (1982b). Ca2+-sequestering smooth endoplasmic reticulum in an invertebrate photoreceptor. II. Its properties as revealed by microphotometric measurements.J. Cell Biol.93849–859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Wegner, A. (1976). Head to tail polymerization of actin.J. Mol. Biol.108139–150. [DOI] [PubMed] [Google Scholar]
  96. Westrum, L. E., Jones, D. H., Gray, E. G., and Barron, J. (1980). Microtubules, dendritic spines and spine apparatuses.Cell Tissue Res.208171–181. [DOI] [PubMed] [Google Scholar]
  97. Wilson, C. J., Groves, P. M., Kitai, S. T., and Linder, J. C. (1983). Three-dimensional structure of dendritic spines in the rat neostriatum.J. Neurosci.3383–398. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES