Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Mar 15;194(3):743–751. doi: 10.1042/bj1940743

The cytochromes in microsomal fractions of germinating mung beans.

G A Hendry, J D Houghton, O T Jones
PMCID: PMC1162809  PMID: 7306021

Abstract

Detailed studies of microsomal cytochromes from mung-bean radicles showed the presence of cytochrome P-420, particularly in dark-grown seedlings, accompanied by smaller quantities of cytochrome P-450. Similar proportions of cytochrome P-420 to cytochrome P-450 were found spectrophotometrically in vivo with whole radicles and hypocotyls. Assayed in vitro, maximum concentrations of both cytochromes were attained after 4 days of growth, before undergoing rapid degradation. Illumination of seedlings stabilized cytochrome P-450 and decreased the amount of cytochrome P-420. Three b cytochromes were present in the microsomal fraction, namely cytochromes b-562.5 (Em + 105 +/- 23 mV), b-560.5 (Em + 49 +/- 13 mV) and b5 (Em - 45 +/- 14 mV), all at pH 7.0. Of the b cytochromes, cytochrome b5 alone undergoes a rapid degradation after day 4, Changes in cytochrome b concentrations were confined to the microsomal fraction: mitochondrial b cytochrome concentrations were unaltered with age. Protohaem degradation (of exogenous methaemalbumin) was detected in microsomal fractions of mung beans. The rates of degradation were highest in extracts of young tissue and declined after day 4. The degradation mechanism and products did not resemble those of mammalian haem oxygenase.

Full text

PDF
743

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdelkader A. B., Cherif A., Demandre C., Mazliak P. The oleyl-coenzyme-A desaturase of potato tubers. Enzymatic properties, intracellular localization and induction during "aging" of tuber slices. Eur J Biochem. 1973 Jan 3;32(1):155–165. doi: 10.1111/j.1432-1033.1973.tb02592.x. [DOI] [PubMed] [Google Scholar]
  2. Castelfranco P. A., Jones O. T. Protoheme turnover and chlorophyll synthesis in greening barley tissue. Plant Physiol. 1975 Mar;55(3):485–490. doi: 10.1104/pp.55.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dutton P. L. Redox potentiometry: determination of midpoint potentials of oxidation-reduction components of biological electron-transfer systems. Methods Enzymol. 1978;54:411–435. doi: 10.1016/s0076-6879(78)54026-3. [DOI] [PubMed] [Google Scholar]
  4. Granick S., Beale S. I. Hemes, chlorophylls, and related compounds: biosynthesis and metabolic regulation. Adv Enzymol Relat Areas Mol Biol. 1978;46:33–203. doi: 10.1002/9780470122914.ch2. [DOI] [PubMed] [Google Scholar]
  5. Holtzman D., Desautel M. Microsomal cytochromes in the immature and adult rat brain. J Neurochem. 1980 Jun;34(6):1535–1537. doi: 10.1111/j.1471-4159.1980.tb11237.x. [DOI] [PubMed] [Google Scholar]
  6. Ishimaru A., Yamazaki I. The carbon monoxide-binding hemoprotein reducible by hydrogen peroxide in microsomal fractions of pea seeds. J Biol Chem. 1977 Jan 10;252(1):199–204. [PubMed] [Google Scholar]
  7. Lodola A., Hendry G. A., Jones O. T. Haem oxygenase: a reappraisal of the stoicheiometry. FEBS Lett. 1979 Aug 1;104(1):45–50. doi: 10.1016/0014-5793(79)81082-0. [DOI] [PubMed] [Google Scholar]
  8. MARTIN E. M., MORTON R. K. Enzymic properties of microsomes and mitochondria from silver beet. Biochem J. 1956 Apr;62(4):696–704. doi: 10.1042/bj0620696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Matsubara T., Koike M., Touchi A., Tochino Y., Sugeno K. Quantitative determination of cytochrome P-450 in rat liver homogenate. Anal Biochem. 1976 Oct;75(2):596–603. doi: 10.1016/0003-2697(76)90114-7. [DOI] [PubMed] [Google Scholar]
  10. Meehan T. D., Coscia C. J. Hydroxylation of geraniol and nerol by a monooxygenase from Vinca rosea. Biochem Biophys Res Commun. 1973 Aug 21;53(4):1043–1048. doi: 10.1016/0006-291x(73)90570-6. [DOI] [PubMed] [Google Scholar]
  11. Murphy P. J., West C. A. The role of mixed function oxidases in kaurene metabolism in Echinocystis macrocarpa Greene endosperm. Arch Biochem Biophys. 1969 Sep;133(2):395–407. doi: 10.1016/0003-9861(69)90468-8. [DOI] [PubMed] [Google Scholar]
  12. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  13. Potts J. R., Weklych R., Conn E. E., Rowell J. The 4-hydroxylation of cinnamic acid by sorghum microsomes and the requirement for cytochrome P-450. J Biol Chem. 1974 Aug 25;249(16):5019–5026. [PubMed] [Google Scholar]
  14. Rich P. R., Bendall D. S. Cytochrome components of plant microsomes. Eur J Biochem. 1975 Jul 1;55(2):333–341. doi: 10.1111/j.1432-1033.1975.tb02167.x. [DOI] [PubMed] [Google Scholar]
  15. Rich P. R., Bendall D. S. The redox potentials of the b-type cytochromes of higher plant chloroplasts. Biochim Biophys Acta. 1980 Jun 10;591(1):153–161. doi: 10.1016/0005-2728(80)90229-7. [DOI] [PubMed] [Google Scholar]
  16. Rich P. R., Cammack R., Bendall D. S. Electron paramagnetic resonance studies of cytochrome P-450 in plant microsomes. Eur J Biochem. 1975 Nov 1;59(1):281–286. doi: 10.1111/j.1432-1033.1975.tb02453.x. [DOI] [PubMed] [Google Scholar]
  17. Rich P. R., Lamb C. J. Biophysical and enzymological studies upon the interaction of trans-cinnamic acid with higher plant microsomal cytochromes P-450. Eur J Biochem. 1977 Jan;72(2):353–360. doi: 10.1111/j.1432-1033.1977.tb11259.x. [DOI] [PubMed] [Google Scholar]
  18. SHICHI H., HACKETT D. P. Studies on the b-type cytochromes from mung bean seedlings. II. Some properties of cytochromes b-555 and b-561. J Biol Chem. 1962 Sep;237:2959–2964. [PubMed] [Google Scholar]
  19. Salaün J. P., Benveniste I., Reichhart D., Durst F. A microsomal (cytochrome P-450)-linked lauric-acid-monooxygenase from aged Jerusalem-artichoke-tuber tissues. Eur J Biochem. 1978 Sep 15;90(1):155–159. doi: 10.1111/j.1432-1033.1978.tb12586.x. [DOI] [PubMed] [Google Scholar]
  20. Siekevitz P. Electron transport systems in microsomes. Origin and functional nature of microsomes. Fed Proc. 1965 Sep-Oct;24(5):1153–1155. [PubMed] [Google Scholar]
  21. Tenhunen R., Marver H. S., Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A. 1968 Oct;61(2):748–755. doi: 10.1073/pnas.61.2.748. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES