Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Jan 15;17(2):615–625. doi: 10.1093/emboj/17.2.615

Modulation of the intracellular stability and toxicity of diphtheria toxin through degradation by the N-end rule pathway.

P O Falnes 1, S Olsnes 1
PMCID: PMC1170411  PMID: 9430652

Abstract

The enzymatically active A-fragment of diphtheria toxin enters the cytosol of sensitive cells where it inhibits protein synthesis by inactivating elongation factor 2 (EF-2). We have constructed a number of diphtheria toxin mutants that are degraded by the N-end rule pathway in Vero cells, and that display a wide range of intracellular stabilities. The degradation could be inhibited by the proteasome inhibitor lactacystin, indicating that the proteasome is responsible for N-end rule-mediated degradation in mammalian cells. Previously, the N-end rule has been investigated by studying the co-translational degradation of intracellularly expressed beta-galactosidase. Our work shows that a mature protein entering the cytosol from the exterior can also be degraded by the N-end rule pathway with a similar, but not identical specificity to that previously found. We found a correlation between the intracellular stability of the mutants and their toxic effect on cells, thus demonstrating a novel manner of modulating the toxicity of a protein toxin. The data also indicate that the inactivation of EF-2 is the rate-limiting step in the intoxication process.

Full Text

The Full Text of this article is available as a PDF (499.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arfin S. M., Bradshaw R. A. Cotranslational processing and protein turnover in eukaryotic cells. Biochemistry. 1988 Oct 18;27(21):7979–7984. doi: 10.1021/bi00421a001. [DOI] [PubMed] [Google Scholar]
  2. Ariansen S., Afanasiev B. N., Moskaug J. O., Stenmark H., Madshus I. H., Olsnes S. Membrane translocation of diphtheria toxin A-fragment: role of carboxy-terminal region. Biochemistry. 1993 Jan 12;32(1):83–90. doi: 10.1021/bi00052a012. [DOI] [PubMed] [Google Scholar]
  3. Bachmair A., Finley D., Varshavsky A. In vivo half-life of a protein is a function of its amino-terminal residue. Science. 1986 Oct 10;234(4773):179–186. doi: 10.1126/science.3018930. [DOI] [PubMed] [Google Scholar]
  4. Bachmair A., Varshavsky A. The degradation signal in a short-lived protein. Cell. 1989 Mar 24;56(6):1019–1032. doi: 10.1016/0092-8674(89)90635-1. [DOI] [PubMed] [Google Scholar]
  5. Baker R. T., Varshavsky A. Inhibition of the N-end rule pathway in living cells. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1090–1094. doi: 10.1073/pnas.88.4.1090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baker R. T., Varshavsky A. Yeast N-terminal amidase. A new enzyme and component of the N-end rule pathway. J Biol Chem. 1995 May 19;270(20):12065–12074. doi: 10.1074/jbc.270.20.12065. [DOI] [PubMed] [Google Scholar]
  7. Blewitt M. G., Chung L. A., London E. Effect of pH on the conformation of diphtheria toxin and its implications for membrane penetration. Biochemistry. 1985 Sep 24;24(20):5458–5464. doi: 10.1021/bi00341a027. [DOI] [PubMed] [Google Scholar]
  8. Boissel J. P., Kasper T. J., Bunn H. F. Cotranslational amino-terminal processing of cytosolic proteins. Cell-free expression of site-directed mutants of human hemoglobin. J Biol Chem. 1988 Jun 15;263(17):8443–8449. [PubMed] [Google Scholar]
  9. Bragg T. S., Robertson D. L. Nucleotide sequence and analysis of the lethal factor gene (lef) from Bacillus anthracis. Gene. 1989 Sep 1;81(1):45–54. doi: 10.1016/0378-1119(89)90335-1. [DOI] [PubMed] [Google Scholar]
  10. Calderwood S. B., Auclair F., Donohue-Rolfe A., Keusch G. T., Mekalanos J. J. Nucleotide sequence of the Shiga-like toxin genes of Escherichia coli. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4364–4368. doi: 10.1073/pnas.84.13.4364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Collier R. J., Kandel J. Structure and activity of diphtheria toxin. I. Thiol-dependent dissociation of a fraction of toxin into enzymically active and inactive fragments. J Biol Chem. 1971 Mar 10;246(5):1496–1503. [PubMed] [Google Scholar]
  12. DeLange R. J., Williams L. C., Drazin R. E., Collier R. J. The amino acid sequence of fragment A, an enzymically active fragment of diphtheria toxin. III. The chymotryptic peptides, the peptides derived by cleavage at tryptophan residues, and the complete sequence of the protein. J Biol Chem. 1979 Jul 10;254(13):5838–5842. [PubMed] [Google Scholar]
  13. Draper R. K., Simon M. I. The entry of diphtheria toxin into the mammalian cell cytoplasm: evidence for lysosomal involvement. J Cell Biol. 1980 Dec;87(3 Pt 1):849–854. doi: 10.1083/jcb.87.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Drazin R., Kandel J., Collier R. J. Structure and activity of diphtheria toxin. II. Attack by trypsin at a specific site within the intact toxin molecule. J Biol Chem. 1971 Mar 10;246(5):1504–1510. [PubMed] [Google Scholar]
  15. Escuyer V., Duflot E., Sezer O., Danchin A., Mock M. Structural homology between virulence-associated bacterial adenylate cyclases. Gene. 1988 Nov 30;71(2):293–298. doi: 10.1016/0378-1119(88)90045-5. [DOI] [PubMed] [Google Scholar]
  16. Falnes P. O., Wiedłocha A., Rapak A., Olsnes S. Farnesylation of CaaX-tagged diphtheria toxin A-fragment as a measure of transfer to the cytosol. Biochemistry. 1995 Sep 5;34(35):11152–11159. doi: 10.1021/bi00035a021. [DOI] [PubMed] [Google Scholar]
  17. Fenteany G., Standaert R. F., Lane W. S., Choi S., Corey E. J., Schreiber S. L. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science. 1995 May 5;268(5211):726–731. doi: 10.1126/science.7732382. [DOI] [PubMed] [Google Scholar]
  18. Ferber S., Ciechanover A. Role of arginine-tRNA in protein degradation by the ubiquitin pathway. Nature. 1987 Apr 23;326(6115):808–811. doi: 10.1038/326808a0. [DOI] [PubMed] [Google Scholar]
  19. Gill D. M., Dinius L. L. The elongation factor 2 content of mammalian cells. Assay method and relation to ribosome number. J Biol Chem. 1973 Jan 25;248(2):654–658. [PubMed] [Google Scholar]
  20. Gonda D. K., Bachmair A., Wünning I., Tobias J. W., Lane W. S., Varshavsky A. Universality and structure of the N-end rule. J Biol Chem. 1989 Oct 5;264(28):16700–16712. [PubMed] [Google Scholar]
  21. Grigoryev S., Stewart A. E., Kwon Y. T., Arfin S. M., Bradshaw R. A., Jenkins N. A., Copeland N. G., Varshavsky A. A mouse amidase specific for N-terminal asparagine. The gene, the enzyme, and their function in the N-end rule pathway. J Biol Chem. 1996 Nov 8;271(45):28521–28532. doi: 10.1074/jbc.271.45.28521. [DOI] [PubMed] [Google Scholar]
  22. Honjo T., Nishizuka Y., Kato I., Hayaishi O. Adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis by diphtheria toxin. J Biol Chem. 1971 Jul 10;246(13):4251–4260. [PubMed] [Google Scholar]
  23. Huang S., Elliott R. C., Liu P. S., Koduri R. K., Weickmann J. L., Lee J. H., Blair L. C., Ghosh-Dastidar P., Bradshaw R. A., Bryan K. M. Specificity of cotranslational amino-terminal processing of proteins in yeast. Biochemistry. 1987 Dec 15;26(25):8242–8246. doi: 10.1021/bi00399a033. [DOI] [PubMed] [Google Scholar]
  24. Hudson T. H., Neville D. M., Jr Quantal entry of diphtheria toxin to the cytosol. J Biol Chem. 1985 Mar 10;260(5):2675–2680. [PubMed] [Google Scholar]
  25. Huguet Soler M., Stoeva S., Schwamborn C., Wilhelm S., Stiefel T., Voelter W. Complete amino acid sequence of the A chain of mistletoe lectin I. FEBS Lett. 1996 Dec 9;399(1-2):153–157. doi: 10.1016/s0014-5793(96)01309-9. [DOI] [PubMed] [Google Scholar]
  26. Jentsch S., Schlenker S. Selective protein degradation: a journey's end within the proteasome. Cell. 1995 Sep 22;82(6):881–884. doi: 10.1016/0092-8674(95)90021-7. [DOI] [PubMed] [Google Scholar]
  27. Krieglstein K. G., Henschen A. H., Weller U., Habermann E. Limited proteolysis of tetanus toxin. Relation to activity and identification of cleavage sites. Eur J Biochem. 1991 Nov 15;202(1):41–51. doi: 10.1111/j.1432-1033.1991.tb16342.x. [DOI] [PubMed] [Google Scholar]
  28. Kurazono H., Mochida S., Binz T., Eisel U., Quanz M., Grebenstein O., Wernars K., Poulain B., Tauc L., Niemann H. Minimal essential domains specifying toxicity of the light chains of tetanus toxin and botulinum neurotoxin type A. J Biol Chem. 1992 Jul 25;267(21):14721–14729. [PubMed] [Google Scholar]
  29. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  30. Lamb F. I., Roberts L. M., Lord J. M. Nucleotide sequence of cloned cDNA coding for preproricin. Eur J Biochem. 1985 Apr 15;148(2):265–270. doi: 10.1111/j.1432-1033.1985.tb08834.x. [DOI] [PubMed] [Google Scholar]
  31. Lory S., Carroll S. F., Collier R. J. Ligand interactions of diphtheria toxin. II. Relationships between the NAD site and the P site. J Biol Chem. 1980 Dec 25;255(24):12016–12019. [PubMed] [Google Scholar]
  32. Lévy F., Johnsson N., Rümenapf T., Varshavsky A. Using ubiquitin to follow the metabolic fate of a protein. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4907–4912. doi: 10.1073/pnas.93.10.4907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. McGill S., Stenmark H., Sandvig K., Olsnes S. Membrane interactions of diphtheria toxin analyzed using in vitro synthesized mutants. EMBO J. 1989 Oct;8(10):2843–2848. doi: 10.1002/j.1460-2075.1989.tb08431.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Miceli R. M., DeGraaf M. E., Fischer H. D. Two-stage selection of sequences from a random phage display library delineates both core residues and permitted structural range within an epitope. J Immunol Methods. 1994 Jan 3;167(1-2):279–287. doi: 10.1016/0022-1759(94)90097-3. [DOI] [PubMed] [Google Scholar]
  35. Moskaug J. O., Sandvig K., Olsnes S. Low pH-induced release of diphtheria toxin A-fragment in Vero cells. Biochemical evidence for transfer to the cytosol. J Biol Chem. 1988 Feb 15;263(5):2518–2525. [PubMed] [Google Scholar]
  36. Moynihan M. R., Pappenheimer A. M., Jr Kinetics of adenosinediphosphoribosylation of elongation factor 2 in cells exposed to diphtheria toxin. Infect Immun. 1981 May;32(2):575–582. doi: 10.1128/iai.32.2.575-582.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Nicosia A., Perugini M., Franzini C., Casagli M. C., Borri M. G., Antoni G., Almoni M., Neri P., Ratti G., Rappuoli R. Cloning and sequencing of the pertussis toxin genes: operon structure and gene duplication. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4631–4635. doi: 10.1073/pnas.83.13.4631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ogata M., Chaudhary V. K., Pastan I., FitzGerald D. J. Processing of Pseudomonas exotoxin by a cellular protease results in the generation of a 37,000-Da toxin fragment that is translocated to the cytosol. J Biol Chem. 1990 Nov 25;265(33):20678–20685. [PubMed] [Google Scholar]
  39. Reiss Y., Kaim D., Hershko A. Specificity of binding of NH2-terminal residue of proteins to ubiquitin-protein ligase. Use of amino acid derivatives to characterize specific binding sites. J Biol Chem. 1988 Feb 25;263(6):2693–2698. [PubMed] [Google Scholar]
  40. Rote K. V., Rechsteiner M. Degradation of proteins microinjected into HeLa cells. The role of substrate flexibility. J Biol Chem. 1986 Nov 25;261(33):15430–15436. [PubMed] [Google Scholar]
  41. Sandvig K., Olsnes S. Diphtheria toxin entry into cells is facilitated by low pH. J Cell Biol. 1980 Dec;87(3 Pt 1):828–832. doi: 10.1083/jcb.87.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sandvig K., Sundan A., Olsnes S. Evidence that diphtheria toxin and modeccin enter the cytosol from different vesicular compartments. J Cell Biol. 1984 Mar;98(3):963–970. doi: 10.1083/jcb.98.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Seufert W., Jentsch S. In vivo function of the proteasome in the ubiquitin pathway. EMBO J. 1992 Aug;11(8):3077–3080. doi: 10.1002/j.1460-2075.1992.tb05379.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Stenmark H., Afanasiev B. N., Ariansen S., Olsnes S. Association between diphtheria toxin A- and B-fragment and their fusion proteins. Biochem J. 1992 Feb 1;281(Pt 3):619–625. doi: 10.1042/bj2810619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Strockbine N. A., Jackson M. P., Sung L. M., Holmes R. K., O'Brien A. D. Cloning and sequencing of the genes for Shiga toxin from Shigella dysenteriae type 1. J Bacteriol. 1988 Mar;170(3):1116–1122. doi: 10.1128/jb.170.3.1116-1122.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sundan A., Olsnes S., Sandvig K., Pihl A. Preparation and properties of chimeric toxins prepared from the constituent polypeptides of diphtheria toxin and ricin. Evidence for entry of ricin A-chain via the diphtheria toxin pathway. J Biol Chem. 1982 Aug 25;257(16):9733–9739. [PubMed] [Google Scholar]
  47. Tobias J. W., Shrader T. E., Rocap G., Varshavsky A. The N-end rule in bacteria. Science. 1991 Nov 29;254(5036):1374–1377. doi: 10.1126/science.1962196. [DOI] [PubMed] [Google Scholar]
  48. Uchida T., Pappenheimer A. M., Jr, Harper A. A. Reconstitution of diphtheria toxin from two nontoxic cross-reacting mutant proteins. Science. 1972 Feb 25;175(4024):901–903. doi: 10.1126/science.175.4024.901. [DOI] [PubMed] [Google Scholar]
  49. Varshavsky A. Codominance and toxins: a path to drugs of nearly unlimited selectivity. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3663–3667. doi: 10.1073/pnas.92.9.3663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Varshavsky A. The N-end rule. Cold Spring Harb Symp Quant Biol. 1995;60:461–478. doi: 10.1101/sqb.1995.060.01.051. [DOI] [PubMed] [Google Scholar]
  51. Varshavsky A. The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12142–12149. doi: 10.1073/pnas.93.22.12142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wiedłocha A., Falnes P. O., Madshus I. H., Sandvig K., Olsnes S. Dual mode of signal transduction by externally added acidic fibroblast growth factor. Cell. 1994 Mar 25;76(6):1039–1051. doi: 10.1016/0092-8674(94)90381-6. [DOI] [PubMed] [Google Scholar]
  53. Wilson B. A., Reich K. A., Weinstein B. R., Collier R. J. Active-site mutations of diphtheria toxin: effects of replacing glutamic acid-148 with aspartic acid, glutamine, or serine. Biochemistry. 1990 Sep 18;29(37):8643–8651. doi: 10.1021/bi00489a021. [DOI] [PubMed] [Google Scholar]
  54. Wood K. A., Lord J. M., Wawrzynczak E. J., Piatak M. Preproabrin: genomic cloning, characterisation and the expression of the A-chain in Escherichia coli. Eur J Biochem. 1991 Jun 15;198(3):723–732. doi: 10.1111/j.1432-1033.1991.tb16072.x. [DOI] [PubMed] [Google Scholar]
  55. Yamaizumi M., Mekada E., Uchida T., Okada Y. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell. 1978 Sep;15(1):245–250. doi: 10.1016/0092-8674(78)90099-5. [DOI] [PubMed] [Google Scholar]
  56. Yamaizumi M., Uchida T., Takamatsu K., Okada Y. Intracellular stability of diphtheria toxin fragment A in the presence and absence of anti-fragment A antibody. Proc Natl Acad Sci U S A. 1982 Jan;79(2):461–465. doi: 10.1073/pnas.79.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Yamamoto T., Gojobori T., Yokota T. Evolutionary origin of pathogenic determinants in enterotoxigenic Escherichia coli and Vibrio cholerae O1. J Bacteriol. 1987 Mar;169(3):1352–1357. doi: 10.1128/jb.169.3.1352-1357.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Yokota K., Kagawa S., Shimizu Y., Akioka H., Tsurumi C., Noda C., Fujimuro M., Yokosawa H., Fujiwara T., Takahashi E. CDNA cloning of p112, the largest regulatory subunit of the human 26s proteasome, and functional analysis of its yeast homologue, sen3p. Mol Biol Cell. 1996 Jun;7(6):853–870. doi: 10.1091/mbc.7.6.853. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES