Abstract
1. Studies of the synthesis and release of radioactive acetylcholine in rat brain-cortex slices incubated in Locke–bicarbonate–[U-14C]glucose media, containing paraoxon as cholinesterase inhibitor, revealed the following phenomena: (a) dependence of K+-or protoveratrine-stimulated acetylcholine synthesis and release on the presence of Na+ and Ca2+ in the incubation medium, (b) enhanced release of radioactive acetylcholine by substances that promote depolarization at the nerve cell membrane (e.g. high K+, ouabain, protoveratrine, sodium l-glutamate, high concentration of acetylcholine), (c) failure of acetylcholine synthesis to keep pace with acetylcholine release under certain conditions (e.g. the presence of ouabain or lack of Na+). 2. Stimulation by K+ of radioactive acetylcholine synthesis was directly proportional to the external concentration of Na+, but some synthesis and release of radioactive acetylcholine occurred in the absence of Na+ as well as in the absence of Ca2+. 3. The Na+ dependence of K+-stimulated acetylcholine synthesis was partly due to suppression of choline transport, as addition of small concentrations of choline partly neutralized the effect of Na+ lack, and partly due to the suppression of the activity of the Na+ pump. 4. Protoveratrine caused a greatly increased release of radioactive acetylcholine without stimulating total radioactive acetylcholine synthesis. Protoveratrine was ineffective in the absence of Ca2+ from the incubation medium. It completely blocked K+ stimulation of acetylcholine synthesis and release. 5. Tetrodotoxin abolished the effects of protoveratrine on acetylcholine release. It had blocking effects (partial or complete) on the action of high K+, sodium l-glutamate and lack of Ca2+ on acetylcholine synthesis and release. 6. Unlabelled exogenous acetylcholine did not diminish the content of labelled tissue acetylcholine, derived from labelled glucose, suggesting that no exchange with vesicular acetylcholine took place. In the presence of 4mm-KCl it caused some increase in the release of labelled acetylcholine. 7. The barbiturates (Amytal, pentothal), whilst having no significant effects on labelled acetylcholine synthesis in unstimulated brain except at high concentration (1mm), diminished or abolished (at 0.25 or 0.5mm) the enhanced release of acetylcholine, due to high K+ or lack of Ca2+. The fall in tissue content of acetylcholine, due to lack of Ca2+, was diminished or abolished by pentothal (0.25 or 0.5mm) or Amytal (0.25mm).
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALDRIDGE W. N., PARKER V. H. Barbiturates and oxidative phosphorylation. Biochem J. 1960 Jul;76:47–56. doi: 10.1042/bj0760047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ALDRIDGE W. N. Some esterases of the rat. Biochem J. 1954 Aug;57(4):692–702. doi: 10.1042/bj0570692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ARMETT C. J., RITCHIE J. M. The action of acetylcholine on conduction in mammalian non-myelinated fibres and its prevention by an anticholinesterase. J Physiol. 1960 Jun;152:141–158. doi: 10.1113/jphysiol.1960.sp006476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BIRKS R. I. THE ROLE OF SODIUM IONS IN THE METABOLISM OF ACETYLCHOLINE. Can J Biochem Physiol. 1963 Dec;41:2573–2597. [PubMed] [Google Scholar]
- BRAGANCA B. M., FAULKNER P., QUASTEL J. H. Effects of inhibitors of glutamine synthesis on the inhibition of acetylcholine synthesis in brain slices by ammonium ions. Biochim Biophys Acta. 1953 Jan;10(1):83–88. doi: 10.1016/0006-3002(53)90213-3. [DOI] [PubMed] [Google Scholar]
- BRAGANCA B. M., QUASTEL J. H. Action of snake venom on acetylcholine synthesis in brain. Nature. 1952 Apr 26;169(4304):695–697. doi: 10.1038/169695a0. [DOI] [PubMed] [Google Scholar]
- Bjegović M., Randić M. Effect of lithium ions on the release of acetylcholine from the cerebral cortex. Nature. 1971 Apr 30;230(5296):587–588. doi: 10.1038/230587a0. [DOI] [PubMed] [Google Scholar]
- Bourdois P. S., Szerb J. C. The absence of 'surplus' acetylcholine formation in prisms prepared from rat cerebral cortex. J Neurochem. 1972 Apr;19(4):1189–1193. doi: 10.1111/j.1471-4159.1972.tb01439.x. [DOI] [PubMed] [Google Scholar]
- Bradford H. F., McIlwain H. Ionic basis for the depolarization of cerebral tissues by excitatory acidic amino acids. J Neurochem. 1966 Nov;13(11):1163–1177. doi: 10.1111/j.1471-4159.1966.tb04274.x. [DOI] [PubMed] [Google Scholar]
- Browning E. T., Schulman M. P. (14C) acetylcholine synthesis by cortex slices of rat brain. J Neurochem. 1968 Dec;15(12):1391–1405. doi: 10.1111/j.1471-4159.1968.tb05921.x. [DOI] [PubMed] [Google Scholar]
- Bull G., Oderfeld-Nowak B. Standardization of a radiochemical assay of choline acetyltransferase and a study of the activation of the enzyme in rabbit brain. J Neurochem. 1971 Jun;18(6):935–941. doi: 10.1111/j.1471-4159.1971.tb12023.x. [DOI] [PubMed] [Google Scholar]
- Chakrin L. W., Whittaker V. P. The subcellular distribution of (N-Me-3H)acetylcholine synthesized by brain in vivo. Biochem J. 1969 Jun;113(1):97–107. doi: 10.1042/bj1130097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collier B., Katz H. S. The release of acetylcholine by acetylcholine in the cat's superior cervical ganglion. Br J Pharmacol. 1970 Jun;39(2):428–438. doi: 10.1111/j.1476-5381.1970.tb12905.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEL CASTILLO J., KATZ B. Changes in end-plate activity produced by presynaptic polarization. J Physiol. 1954 Jun 28;124(3):586–604. doi: 10.1113/jphysiol.1954.sp005131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DETTBARN W. D., DAVIS F. A. Effects of acetylcholine on axonal conduction of lobster nerve. Biochim Biophys Acta. 1963 May 21;66:397–405. doi: 10.1016/0006-3002(63)91208-3. [DOI] [PubMed] [Google Scholar]
- ECCLES J. C., LILEY A. W. Factors controlling the liberation of acetylcholine at the neuromuscular junction. Am J Phys Med. 1959 Jun;38(3):96–103. [PubMed] [Google Scholar]
- FATT P., KATZ B. The effect of sodium ions on neuromuscular transmission. J Physiol. 1952 Sep;118(1):73–87. doi: 10.1113/jphysiol.1952.sp004773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRANKENHAEUSER B., HODGKIN A. L. The effect of calcium on the sodium permeability of a giant nerve fibre. J Physiol. 1955 May 27;128(2):40–1P. [PubMed] [Google Scholar]
- Gage P. W., Quastel D. M. Competition between sodium and calcium ions in transmitter release at mammalian neuromuscular junctions. J Physiol. 1966 Jul;185(1):95–123. doi: 10.1113/jphysiol.1966.sp007974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Godfraind J. M., Kawamura H., Krnjević K., Pumain R. Actions of dinitrophenol and some other metabolic inhibitors on cortical neurones. J Physiol. 1971 May;215(1):199–222. doi: 10.1113/jphysiol.1971.sp009465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARTLEY B. S., KILBY B. A. THE inhibition of chymotrypsin by diethyl p-nitrophenyl phosphate. Biochem J. 1952 Mar;50(5):672–678. doi: 10.1042/bj0500672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HEBB C. Cholinergic neurons in vertebrates. Nature. 1961 Nov 11;192:527–529. doi: 10.1038/192527a0. [DOI] [PubMed] [Google Scholar]
- HEMSWORTH B. A., MORRIS D. A COMPARISON OF THE N-ALKYL GROUP SPECIFICITY OF CHOLINE ACETYLTRANSFERASE FROM DIFFERENT SPECIES. J Neurochem. 1964 Nov;11:793–803. doi: 10.1111/j.1471-4159.1964.tb06728.x. [DOI] [PubMed] [Google Scholar]
- Harvey A. M., Macintosh F. C. Calcium and synaptic transmission in a sympathetic ganglion. J Physiol. 1940 Jan 15;97(3):408–416. doi: 10.1113/jphysiol.1940.sp003818. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harvey J. A., McIlwain H. Excitatory acidic amino acids and the cation content and sodium ion flux of isolated tissues from the brain. Biochem J. 1968 Jun;108(2):269–274. doi: 10.1042/bj1080269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JOANNY P., HILLMAN H. FURTHER STUDIES ON THE POTASSIUM AND SODIUM CONCENTRATIONS OF MAMMALIAN CEREBRAL SLICES IN VITRO. J Neurochem. 1964 Jun;11:413–422. doi: 10.1111/j.1471-4159.1964.tb11600.x. [DOI] [PubMed] [Google Scholar]
- KATZ B., MILEDI R. THE MEASUREMENT OF SYNAPTIC DELAY, AND THE TIME COURSE OF ACETYLCHOLINE RELEASE AT THE NEUROMUSCULAR JUNCTION. Proc R Soc Lond B Biol Sci. 1965 Feb 16;161:483–495. doi: 10.1098/rspb.1965.0016. [DOI] [PubMed] [Google Scholar]
- KELLY J. S. ANTAGONISM BETWEEN NA+ AND CA2+ AT THE NEUROMUSCULAR JUNCTION. Nature. 1965 Jan 16;205:296–297. doi: 10.1038/205296a0. [DOI] [PubMed] [Google Scholar]
- KEWITZ H., NACHMANSOHN D. A specific antidote against lethal alkyl phosphate intoxication. IV. Effects in brain. Arch Biochem Biophys. 1957 Feb;66(2):271–283. [PubMed] [Google Scholar]
- KINI M. M., QUASTEL J. H. Carbohydrate--amino-acid inter-relations in brain cortex in vitro. Nature. 1959 Jul 25;184:252–256. doi: 10.1038/184252a0. [DOI] [PubMed] [Google Scholar]
- Kaita A. A., Goldberg A. M. Control of acetylcholine synthesis--the inhibition of choline acetyltransferase by acetylcholine. J Neurochem. 1969 Jul;16(7):1185–1191. doi: 10.1111/j.1471-4159.1969.tb05964.x. [DOI] [PubMed] [Google Scholar]
- Katz B., Miledi R. Further study of the role of calcium in synaptic transmission. J Physiol. 1970 May;207(3):789–801. doi: 10.1113/jphysiol.1970.sp009095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz B., Miledi R. Ionic requirements of synaptic transmitter release. Nature. 1967 Aug 5;215(5101):651–651. doi: 10.1038/215651a0. [DOI] [PubMed] [Google Scholar]
- Katz B., Miledi R. Spontaneous and evoked activity of motor nerve endings in calcium Ringer. J Physiol. 1969 Aug;203(3):689–706. doi: 10.1113/jphysiol.1969.sp008887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz B., Miledi R. Tetrodotoxin and neuromuscular transmission. Proc R Soc Lond B Biol Sci. 1967 Jan 31;167(1006):8–22. doi: 10.1098/rspb.1967.0010. [DOI] [PubMed] [Google Scholar]
- Katz B., Miledi R. Tetrodotoxin-resistant electric activity in presynaptic terminals. J Physiol. 1969 Aug;203(2):459–487. doi: 10.1113/jphysiol.1969.sp008875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz B. Quantal mechanism of neural transmitter release. Science. 1971 Jul 9;173(3992):123–126. doi: 10.1126/science.173.3992.123. [DOI] [PubMed] [Google Scholar]
- Koketsu K., Nishi S. Cholinergic receptors at sympathetic preganglionic nerve terminals. J Physiol. 1968 May;196(2):293–310. doi: 10.1113/jphysiol.1968.sp008508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krnjević K., Pumain R., Renaud L. The mechanism of excitation by acetylcholine in the cerebral cortex. J Physiol. 1971 May;215(1):247–268. doi: 10.1113/jphysiol.1971.sp009467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liang C. C., Quastel J. H. Uptake of acetylcholine in rat brain cortex slices. Biochem Pharmacol. 1969 May;18(5):1169–1185. doi: 10.1016/0006-2952(69)90120-8. [DOI] [PubMed] [Google Scholar]
- MCCAMAN R. E., HUNT J. M. MICRODETERMINATION OF CHOLINE ACETYLASE IN NERVOUS TISSUE. J Neurochem. 1965 Apr;12:253–259. doi: 10.1111/j.1471-4159.1965.tb06762.x. [DOI] [PubMed] [Google Scholar]
- MYERS D. K. Studies on ali-esterases. 4. Differentiation of esterases in pancreas and brain by the use of organophosphorus inhibitors. Biochem J. 1956 Dec;64(4):740–747. doi: 10.1042/bj0640740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mann P. J., Tennenbaum M., Quastel J. H. Acetylcholine metabolism in the central nervous system. Biochem J. 1939 Sep;33(9):1506–1518. doi: 10.1042/bj0331506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mann P. J., Tennenbaum M., Quastel J. H. Acetylcholine metabolism in the central nervous system: The effects of potassium and other cations on acetylcholine liberation. Biochem J. 1939 May;33(5):822–835. doi: 10.1042/bj0330822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mann P. J., Tennenbaum M., Quastel J. H. On the mechanism of acetylcholine formation in brain in vitro. Biochem J. 1938 Feb;32(2):243–261. doi: 10.1042/bj0320243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marchbanks R. M. Exchangeability of radioactive acetylcholine with the bound acetylcholine of synaptosomes and synaptic vesicles. Biochem J. 1968 Jan;106(1):87–95. doi: 10.1042/bj1060087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuda T., Saito K., Katsuki S., Hata F., Yoshida H. Studies on soluble proteins released from the synaptic vesicles of rat brain cortex. J Neurochem. 1971 May;18(5):713–719. doi: 10.1111/j.1471-4159.1971.tb12001.x. [DOI] [PubMed] [Google Scholar]
- McCaman R. E., Rodríguez de Lores G., De Robertis E. Species differences in subcellular distribution of choline acetylase in the CNS. A study of choline acetylase, acetylcholinesterase, 5-hydroxytryptophan decarboxylase, and monoamine oxidase in four species. J Neurochem. 1965 Nov;12(11):927–935. doi: 10.1111/j.1471-4159.1965.tb11936.x. [DOI] [PubMed] [Google Scholar]
- McLENNAN H., ELLIQTT K. A. C. Factors affecting the synthesis of acetylcholine by brain slices. Am J Physiol. 1950 Dec;163(3):605–613. doi: 10.1152/ajplegacy.1950.163.3.605. [DOI] [PubMed] [Google Scholar]
- Michalek H., Antal J., Gatti G. L., Pocchiari F. Effect of triperidol on processes involving acetylcholine in rat brain in vitro. Biochem Pharmacol. 1971 Jun;20(6):1265–1270. doi: 10.1016/0006-2952(71)90357-1. [DOI] [PubMed] [Google Scholar]
- Morris D., Grewaal D. S. Human placental choline acetyltransferase. Radiometric assay, inhibition by analogues of choline and acetylcholine, and isotopic exchange between choline and acetylcholine. Eur J Biochem. 1971 Oct 26;22(4):563–572. doi: 10.1111/j.1432-1033.1971.tb01578.x. [DOI] [PubMed] [Google Scholar]
- Musick J., Hubbard J. I. Release of protein from mouse motor nerve terminals. Nature. 1972 Jun 2;237(5353):279–281. doi: 10.1038/237279a0. [DOI] [PubMed] [Google Scholar]
- Nicklas W. J., Clark J. B., Williamson J. R. Metabolism of rat brain mitochondria. Studies on the potassium ion-stimulated oxidation of pyruvate. Biochem J. 1971 Jun;123(1):83–95. doi: 10.1042/bj1230083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okamoto K., Quastel J. H. Tetrodotoxin-sensitive uptake of ions and water byslices of rat brain in vitro. Biochem J. 1970 Nov;120(1):37–47. doi: 10.1042/bj1200037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okamoto K., Quastel J. H. Water uptake and energy metabolism in brain slices from the rat. Biochem J. 1970 Nov;120(1):25–36. doi: 10.1042/bj1200025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PERRY W. L. M. Acetylcholine release in the cat's superior cervical ganglion. J Physiol. 1953 Mar;119(4):439–454. doi: 10.1113/jphysiol.1953.sp004858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paton W. D., Vizi E. S., Zar M. A. The mechanism of acetylcholine release from parasympathetic nerves. J Physiol. 1971 Jul;215(3):819–848. doi: 10.1113/jphysiol.1971.sp009500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polak R. L., Meeuws M. M. The influence of atropine on the release and uptake of acetylcholine by the isolated cerebral cortex of the rat. Biochem Pharmacol. 1966 Jul;15(7):989–992. doi: 10.1016/0006-2952(66)90176-6. [DOI] [PubMed] [Google Scholar]
- Potter L. T., Glover V. A., Saelens J. K. Choline acetyltransferase from rat brain. J Biol Chem. 1968 Jul 25;243(14):3864–3870. [PubMed] [Google Scholar]
- Quastel D. M., Hackett J. T., Cooke J. D. Calcium: is it required for transmitter secretion? Science. 1971 Jun 4;172(3987):1034–1036. doi: 10.1126/science.172.3987.1034. [DOI] [PubMed] [Google Scholar]
- Quastel D. M., Hackett J. T., Okamoto K. Presynaptic action of central depressant drugs: inhibition of depolarization-secretion coupling. Can J Physiol Pharmacol. 1972 Mar;50(3):279–284. doi: 10.1139/y72-042. [DOI] [PubMed] [Google Scholar]
- Quastel J. H. Molecular transport at cell membranes. Proc R Soc Lond B Biol Sci. 1965 Oct 12;163(991):169–196. doi: 10.1098/rspb.1965.0065. [DOI] [PubMed] [Google Scholar]
- Quastel J. H., Tennenbaum M., Wheatley A. H. Choline ester formation in, and choline esterase activities of, tissues in vitro. Biochem J. 1936 Sep;30(9):1668–1681. doi: 10.1042/bj0301668. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REISBERG R. B. Properties and biological significance of choline acetylase. Yale J Biol Med. 1957 Feb;29(4):403–435. [PMC free article] [PubMed] [Google Scholar]
- ROWSELL E. V. Applied electrical pulses and the ammonia and acetylcholine of isolated cerebral cortex slices. Biochem J. 1954 Aug;57(4):666–673. doi: 10.1042/bj0570666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reading H. W., Wallwork J. Oxidation of succinate and pyruvate in rat brain and its effect on barbiturate anaesthesia. Biochem Pharmacol. 1969 Sep;18(9):2211–2214. doi: 10.1016/0006-2952(69)90327-x. [DOI] [PubMed] [Google Scholar]
- Ritchie A. K., Goldberg A. M. Vesicular and synaptoplasmic synthesis of acetylcholine. Science. 1970 Jul 31;169(3944):489–490. doi: 10.1126/science.169.3944.489. [DOI] [PubMed] [Google Scholar]
- Romero P. J., Whittam R. The control by internal calcium of membrane permeability to sodium and potassium. J Physiol. 1971 May;214(3):481–507. doi: 10.1113/jphysiol.1971.sp009445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHANES A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. I. The resting cell and its alteration by extrinsic factors. Pharmacol Rev. 1958 Mar;10(1):59–164. [PubMed] [Google Scholar]
- SHANES A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. II. The action potential and excitation. Pharmacol Rev. 1958 Jun;10(2):165–273. [PubMed] [Google Scholar]
- Sattin A. The synthesis and storage of acetylcholine in the striatum. J Neurochem. 1966 Jun;13(6):515–524. doi: 10.1111/j.1471-4159.1966.tb09866.x. [DOI] [PubMed] [Google Scholar]
- Schuberth J., Sundwall A., Sörbo B. Relation between Na+-K+ transport and the uptake of choline by brain slices. Life Sci. 1967 Feb 1;6(3):293–295. doi: 10.1016/0024-3205(67)90158-0. [DOI] [PubMed] [Google Scholar]
- Shankar R., Quastel J. H. Effects of tetrodotoxin and anaesthetics on brain metabolism and transport during anoxia. Biochem J. 1972 Feb;126(4):851–867. doi: 10.1042/bj1260851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shankaran R., Quastel J. H. Effects of anesthetics on sodium uptake into rat brain cortex in vitro. Biochem Pharmacol. 1972 Jun 15;21(12):1763–1773. doi: 10.1016/0006-2952(72)90083-4. [DOI] [PubMed] [Google Scholar]
- Sollenberg J., Sörbo B. On the origin of the acetyl moiety of acetylcholine in brain studied with a differential labelling technique using 3H-14C-mixed labelled glucose and acetate. J Neurochem. 1970 Feb;17(2):201–207. doi: 10.1111/j.1471-4159.1970.tb02201.x. [DOI] [PubMed] [Google Scholar]
- TAKAGAKI G., TSUKADA Y. The effect of some inorganic ions on brain slices metabolizing glucose or pyruvate. J Neurochem. 1957;2(1):21–29. doi: 10.1111/j.1471-4159.1957.tb12349.x. [DOI] [PubMed] [Google Scholar]
- THESLEFF S., QUASTEL D. M. NEUROMUSCULAR PHARMACOLOGY. Annu Rev Pharmacol. 1965;5:263–284. doi: 10.1146/annurev.pa.05.040165.001403. [DOI] [PubMed] [Google Scholar]
- Weakly J. N. Effect of barbiturates on 'quantal' synaptic transmission in spinal motoneurones. J Physiol. 1969 Sep;204(1):63–77. doi: 10.1113/jphysiol.1969.sp008898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welsch F., Dettbarn W. D. Inhibition of cholinesterases of rat diaphragm muscle by organophosphates and spontaneous recovery of enzyme activity in vitro. Biochem Pharmacol. 1972 Apr 1;21(7):1039–1049. doi: 10.1016/0006-2952(72)90409-1. [DOI] [PubMed] [Google Scholar]
- Whittaker V. P. Origin and function of synaptic vesicles. Ann N Y Acad Sci. 1971 Sep 15;183:21–32. doi: 10.1111/j.1749-6632.1971.tb30739.x. [DOI] [PubMed] [Google Scholar]
- YOSHIDA H., NUKADA T., FUJISAWA H. Effect of ouabain on ion transport and metabolic turnover of phospholipid of brain slices. Biochim Biophys Acta. 1961 Apr 15;48:614–615. doi: 10.1016/0006-3002(61)90068-3. [DOI] [PubMed] [Google Scholar]