Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1972 May;127(5):809–818. doi: 10.1042/bj1270809

The interaction of catecholamines and adrenal corticosteroids in the induction of phosphopyruvate carboxylase in rat liver and adipose tissue

Lea Reshef 1, R W Hanson 1
PMCID: PMC1178791  PMID: 4342497

Abstract

Catecholamines induced an increase in the activity of rat adipose tissue and liver phosphopyruvate carboxylases that was maintained for 48h. The response of adipose tissue phosphopyruvate carboxylase was blocked by actinomycin D, corticosteroids and propranolol, whereas corticosteroids and propranolol did not affect the liver enzyme. Cortisol phosphate, like actinomycin D, interfered only with the initiation of the increase in enzyme activity caused by noradrenaline, but not with the process of enzyme accumulation. In contrast, cycloheximide was effective in blocking enzyme induction throughout the course of the catecholamine effect. Adrenocorticotrophic hormone caused a short-term induction of adipose tissue phosphopyruvate carboxylase, which could be blocked by propranolol. Hepatic phosphopyruvate carboxylase, but not the adipose tissue enzyme, was induced by dibutyryladenosine 3′:5′-cyclic monophosphate and by glucagon. Both nicotinic acid and nicotinamide decreased the normal induction of adipose tissue phosphopyruvate carboxylase caused by starvation, but only nicotinamide increased the activity of the liver enzyme.

Full text

PDF
809

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballard F. J., Hanson R. W. Phosphoenolpyruvate carboxykinase and pyruvate carboxylase in developing rat liver. Biochem J. 1967 Sep;104(3):866–871. doi: 10.1042/bj1040866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ballard F. J., Hanson R. W. Purification of phosphoenolpyruvate carboxykinase from the cytosol fraction of rat liver and the immunochemical demonstration of differences between this enzyme and the mitochondrial phosphoenolpyruvate carboxykinase. J Biol Chem. 1969 Oct 25;244(20):5625–5630. [PubMed] [Google Scholar]
  3. Black I. B., Axelrod J. Biphasic effect of norepinephrine in the regulation of hepatic tyrosine transaminase activity. Arch Biochem Biophys. 1970 Jun;138(2):614–619. doi: 10.1016/0003-9861(70)90388-7. [DOI] [PubMed] [Google Scholar]
  4. Blake R. L., Blake S. L., Loh H. H., Kun E. The effect of nicotinamide and homologs on the activity of inducible enzymes and NAD content of the rat liver. Mol Pharmacol. 1967 Sep;3(5):412–422. [PubMed] [Google Scholar]
  5. Butcher R. W., Baird C. E., Sutherland E. W. Effects of lipolytic and antilipolytic substances on adenosine 3',5'-monophosphate levels in isolated fat cells. J Biol Chem. 1968 Apr 25;243(8):1705–1712. [PubMed] [Google Scholar]
  6. CARLSON L. A., ORO L. The effect of nicotinic acid on the plasma free fatty acid; demonstration of a metabolic type of sympathicolysis. Acta Med Scand. 1962 Dec;172:641–645. doi: 10.1111/j.0954-6820.1962.tb07203.x. [DOI] [PubMed] [Google Scholar]
  7. CARLSON L. A. Studies on the effect of nicotinic acid on catecholamine stimulated lipolysis in adipose tissue in vitro. Acta Med Scand. 1963 Jun;173:719–722. doi: 10.1111/j.0954-6820.1963.tb17457.x. [DOI] [PubMed] [Google Scholar]
  8. Exton J. H., Park C. R. Control of gluconeogenesis in liver. II. Effects of glucagon, catecholamines, and adenosine 3',5'-monophosphate on gluconeogenesis in the perfused rat liver. J Biol Chem. 1968 Aug 25;243(16):4189–4196. [PubMed] [Google Scholar]
  9. Foster D. O., Ray P. D., Lardy H. A. Studies on the mechanisms underlying adaptive changes in rat liver phosphoenolpyruvate carboxykinase. Biochemistry. 1966 Feb;5(2):555–562. doi: 10.1021/bi00866a022. [DOI] [PubMed] [Google Scholar]
  10. GREENGARD O., SMITH M. A., ACS G. Relation of cortisone and synthesis of ribonucleic acid to induced and developmental enzyme formation. J Biol Chem. 1963 Apr;238:1548–1551. [PubMed] [Google Scholar]
  11. Greengard O. The quantitative regulation of specific proteins in animal tissues; words and facts. Enzymol Biol Clin (Basel) 1967;8(2):81–96. doi: 10.1159/000458182. [DOI] [PubMed] [Google Scholar]
  12. Hanson R. W., Ziporin Z. Z. Pyridine nucleotide synthesis by rat adipose tissue in vitro. J Lipid Res. 1967 Jan;8(1):30–37. [PubMed] [Google Scholar]
  13. Jefferson L. S., Exton J. H., Butcher R. W., Sutherland E. W., Park C. R. Role of adenosine 3',5'-monophosphate in the effects of insulin and anti-insulin serum on liver metabolism. J Biol Chem. 1968 Mar 10;243(5):1031–1038. [PubMed] [Google Scholar]
  14. Kupiecki F. P., Marshall N. B. Effects of 5-methylpyrazole-3-carboxylic acid (U-19425) and nicotinic acid on lipolysis in vitro and in vivo and on cyclic-3',5'-AMP phosphodiesterase. J Pharmacol Exp Ther. 1968 Mar;160(1):166–170. [PubMed] [Google Scholar]
  15. Milner R. D., Hales C. N. The interaction of various inhibitors and stimuli of insulin release studied with rabbit pancreas in vitro. Biochem J. 1969 Jul;113(3):473–479. doi: 10.1042/bj1130473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pereira J. N., Mears G. A. The biphasic effect of nicotinic acid on plasma FFA levels. Life Sci I. 1971 Jan 1;10(1):1–8. doi: 10.1016/0024-3205(71)90240-2. [DOI] [PubMed] [Google Scholar]
  17. Pereira J. N. The plasma free fatty acid rebound induced by nicotinic acid. J Lipid Res. 1967 May;8(3):239–244. [PubMed] [Google Scholar]
  18. Porte D., Jr, Graber A. L., Kuzuya T., Williams R. H. The effect of epinephrine on immunoreactive insulin levels in man. J Clin Invest. 1966 Feb;45(2):228–236. doi: 10.1172/JCI105335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reshef L., Ballard F. J., Hanson R. W. The role of the adrenals in the regulation of phosphoenolpyruvate carboxykinase of rat adipose tissue. J Biol Chem. 1969 Oct 25;244(20):5577–5581. [PubMed] [Google Scholar]
  20. Reshef L., Hanson R. W., Ballard F. J. A possible physiological role for glyceroneogenesis in rat adipose tissue. J Biol Chem. 1970 Nov 25;245(22):5979–5984. [PubMed] [Google Scholar]
  21. Reshef L., Hanson R. W., Ballard F. J. Glyceride-glycerol synthesis from pyruvate. Adaptive changes in phosphoenolpyruvate carboxykinase and pyruvate carboxylase in adipose tissue and liver. J Biol Chem. 1969 Apr 25;244(8):1994–2001. [PubMed] [Google Scholar]
  22. Robison G. A., Butcher R. W., Sutherland E. W. Adenyl cyclase as an adrenergic receptor. Ann N Y Acad Sci. 1967 Feb 10;139(3):703–723. doi: 10.1111/j.1749-6632.1967.tb41239.x. [DOI] [PubMed] [Google Scholar]
  23. SHRAGO E., LARDY H. A., NORDLIE R. C., FOSTER D. O. METABOLIC AND HORMONAL CONTROL OF PHOSPHOENOLPYRUVATE CARBOXYKINASE AND MALIC ENZYME IN RAT LIVER. J Biol Chem. 1963 Oct;238:3188–3192. [PubMed] [Google Scholar]
  24. VAUGHAN M., STEINBERG D. EFFECT OF HORMONES ON LIPOLYSIS AND ESTERIFICATION OF FREE FATTY ACIDS DURING INCUBATION OF ADIPOSE TISSUE IN VITRO. J Lipid Res. 1963 Apr;4:193–199. [PubMed] [Google Scholar]
  25. Wicks W. D., Kenney F. T., Lee K. L. Induction of hepatic enzyme synthesis in vivo by adenosine 3', 5'-monophosphate. J Biol Chem. 1969 Nov 10;244(21):6008–6013. [PubMed] [Google Scholar]
  26. Wurtman R. J. Time-dependent variations in amino acid metabolism: mechanism of the tyrosine transaminase rhythm in rat liver. Adv Enzyme Regul. 1969;7:57–67. doi: 10.1016/0065-2571(69)90010-7. [DOI] [PubMed] [Google Scholar]
  27. Yeung D., Oliver I. T. Factors affecting the premature induction of phosphopyruvate carboxylase in neonatal rat liver. Biochem J. 1968 Jun;108(2):325–331. doi: 10.1042/bj1080325. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES