Abstract
Tryptophan, proline, and basic amino acids have all been implicated as being important in the assembly and structure of membrane proteins. Indolicidin, an antimicrobial 13-residue peptide-amide isolated from the cytoplasmic granules of bovine neutrophils, is highly enriched in these amino acids: five tryptophans, three prolines, three basic residues, and no acidic residues. Consistent with the likely importance of these amino acids in membrane protein assembly, indolicidin is known to be highly membrane-active and is believed to act by disruption of cell membranes. We have, therefore, examined the interactions of native indolicidin with large unilamellar vesicles (LUV) formed from palmitoyloleoylphosphatidylcholine (POPC), and palmitoyloleoylphosphatidylglycerol (POPG), in order to use it as a model system for studying membrane protein insertion and for evaluating the relative contributions of hydrophobic and electrostatic forces in peptide-bilayer interactions. Equilibrium dialysis measurements indicate that indolicidin binds strongly, but reversibly, to both neutral POPC and anionic POPG vesicles with free energies of transfer of -8.8 ± 0.2 and -11.5 ± 0.4 kcal/mol, respectively. The extremely strong partitioning into POPG vesicles necessitated the development of a new equilibrium dialysis method that is described in detail. Tryptophan fluorescence measurements show that indolicidin is located in the bilayer interface and that indole fluorescence is affected by the type of lipid used to form the LUVs. Circular dichroism (CD) measurements reveal unordered conformations in aqueous and bulk organic solutions and a somewhat more ordered, but not α-helical, conformation in SDS micelles and lipid bilayers. Fluorescence requenching measurements (Ladokhin et al. 1995. Biophys. J. 69:1964-1971) on vesicles loaded with the fluorophore/quencher pair 8-aminonapthalene-1,3,6 trisulfonic acid (ANTS)/p-xylene-bis-pyridinium bromide (DPX), show that indolicidin induces membrane permeabilization. For anionic POPG, leakage is graded with a high preference for the release of cationic DPX over anionic ANTS. For neutral POPC vesicles no such preference is observed. Leakage induction is more effective with POPG vesicles than with POPC vesicles, as judged by three quantitative measures that are developed in the Appendix.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmad I., Perkins W. R., Lupan D. M., Selsted M. E., Janoff A. S. Liposomal entrapment of the neutrophil-derived peptide indolicidin endows it with in vivo antifungal activity. Biochim Biophys Acta. 1995 Jul 26;1237(2):109–114. doi: 10.1016/0005-2736(95)00087-j. [DOI] [PubMed] [Google Scholar]
- Ben-Tal N., Honig B., Peitzsch R. M., Denisov G., McLaughlin S. Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results. Biophys J. 1996 Aug;71(2):561–575. doi: 10.1016/S0006-3495(96)79280-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benachir T., Lafleur M. Study of vesicle leakage induced by melittin. Biochim Biophys Acta. 1995 May 4;1235(2):452–460. doi: 10.1016/0005-2736(95)80035-e. [DOI] [PubMed] [Google Scholar]
- Blanco F. J., Rivas G., Serrano L. A short linear peptide that folds into a native stable beta-hairpin in aqueous solution. Nat Struct Biol. 1994 Sep;1(9):584–590. doi: 10.1038/nsb0994-584. [DOI] [PubMed] [Google Scholar]
- Brahms S., Brahms J. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J Mol Biol. 1980 Apr;138(2):149–178. doi: 10.1016/0022-2836(80)90282-x. [DOI] [PubMed] [Google Scholar]
- Dempsey C. E. The actions of melittin on membranes. Biochim Biophys Acta. 1990 May 7;1031(2):143–161. doi: 10.1016/0304-4157(90)90006-x. [DOI] [PubMed] [Google Scholar]
- Dufourcq J., Faucon J. F. Intrinsic fluorescence study of lipid-protein interactions in membrane models. Binding of melittin, an amphipathic peptide, to phospholipid vesicles. Biochim Biophys Acta. 1977 May 16;467(1):1–11. doi: 10.1016/0005-2736(77)90236-x. [DOI] [PubMed] [Google Scholar]
- Falla T. J., Karunaratne D. N., Hancock R. E. Mode of action of the antimicrobial peptide indolicidin. J Biol Chem. 1996 Aug 9;271(32):19298–19303. doi: 10.1074/jbc.271.32.19298. [DOI] [PubMed] [Google Scholar]
- Grant E., Jr, Beeler T. J., Taylor K. M., Gable K., Roseman M. A. Mechanism of magainin 2a induced permeabilization of phospholipid vesicles. Biochemistry. 1992 Oct 20;31(41):9912–9918. doi: 10.1021/bi00156a008. [DOI] [PubMed] [Google Scholar]
- Ladokhin A. S., Holloway P. W. Fluorescence of membrane-bound tryptophan octyl ester: a model for studying intrinsic fluorescence of protein-membrane interactions. Biophys J. 1995 Aug;69(2):506–517. doi: 10.1016/S0006-3495(95)79924-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ladokhin A. S., Holloway P. W. Fluorescence quenching study of melittin-membrane interactions. Ukr Biokhim Zh (1978) 1995 Mar-Apr;67(2):34–40. [PubMed] [Google Scholar]
- Ladokhin A. S., Wang L., Steggles A. W., Holloway P. W. Fluorescence study of a mutant cytochrome b5 with a single tryptophan in the membrane-binding domain. Biochemistry. 1991 Oct 22;30(42):10200–10206. doi: 10.1021/bi00106a018. [DOI] [PubMed] [Google Scholar]
- Ladokhin A. S., Wimley W. C., White S. H. Leakage of membrane vesicle contents: determination of mechanism using fluorescence requenching. Biophys J. 1995 Nov;69(5):1964–1971. doi: 10.1016/S0006-3495(95)80066-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuzaki K., Murase O., Fujii N., Miyajima K. Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry. 1995 May 16;34(19):6521–6526. doi: 10.1021/bi00019a033. [DOI] [PubMed] [Google Scholar]
- Mayer L. D., Hope M. J., Cullis P. R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta. 1986 Jun 13;858(1):161–168. doi: 10.1016/0005-2736(86)90302-0. [DOI] [PubMed] [Google Scholar]
- Mui B. L., Cullis P. R., Evans E. A., Madden T. D. Osmotic properties of large unilamellar vesicles prepared by extrusion. Biophys J. 1993 Feb;64(2):443–453. doi: 10.1016/S0006-3495(93)81385-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park K., Perczel A., Fasman G. D. Differentiation between transmembrane helices and peripheral helices by the deconvolution of circular dichroism spectra of membrane proteins. Protein Sci. 1992 Aug;1(8):1032–1049. doi: 10.1002/pro.5560010809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perczel A., Hollósi M., Tusnády G., Fasman G. D. Convex constraint analysis: a natural deconvolution of circular dichroism curves of proteins. Protein Eng. 1991 Aug;4(6):669–679. doi: 10.1093/protein/4.6.669. [DOI] [PubMed] [Google Scholar]
- Ronish E. W., Krimm S. The calculated circular dichroism of polyproline II in the polarizability approximation. Biopolymers. 1974;13(8):1635–1651. doi: 10.1002/bip.1974.360130810. [DOI] [PubMed] [Google Scholar]
- Sawyer D. B., Williams L. P., Whaley W. L., Koeppe R. E., 2nd, Andersen O. S. Gramicidins A, B, and C form structurally equivalent ion channels. Biophys J. 1990 Nov;58(5):1207–1212. doi: 10.1016/S0006-3495(90)82461-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schiffer M., Chang C. H., Stevens F. J. The functions of tryptophan residues in membrane proteins. Protein Eng. 1992 Apr;5(3):213–214. doi: 10.1093/protein/5.3.213. [DOI] [PubMed] [Google Scholar]
- Schwarz G., Arbuzova A. Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye. Biochim Biophys Acta. 1995 Oct 4;1239(1):51–57. doi: 10.1016/0005-2736(95)00134-o. [DOI] [PubMed] [Google Scholar]
- Schwarz G., Robert C. H. Kinetics of pore-mediated release of marker molecules from liposomes or cells. Biophys Chem. 1992 Apr;42(3):291–296. doi: 10.1016/0301-4622(92)80021-v. [DOI] [PubMed] [Google Scholar]
- Schwarz G., Zong R. T., Popescu T. Kinetics of melittin induced pore formation in the membrane of lipid vesicles. Biochim Biophys Acta. 1992 Sep 21;1110(1):97–104. doi: 10.1016/0005-2736(92)90299-2. [DOI] [PubMed] [Google Scholar]
- Selsted M. E., Novotny M. J., Morris W. L., Tang Y. Q., Smith W., Cullor J. S. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem. 1992 Mar 5;267(7):4292–4295. [PubMed] [Google Scholar]
- Sessa G., Freer J. H., Colacicco G., Weissmann G. Interaction of alytic polypeptide, melittin, with lipid membrane systems. J Biol Chem. 1969 Jul 10;244(13):3575–3582. [PubMed] [Google Scholar]
- Sieber V., Moe G. R. Interactions contributing to the formation of a beta-hairpin-like structure in a small peptide. Biochemistry. 1996 Jan 9;35(1):181–188. doi: 10.1021/bi950681o. [DOI] [PubMed] [Google Scholar]
- Vogel H. Incorporation of melittin into phosphatidylcholine bilayers. Study of binding and conformational changes. FEBS Lett. 1981 Nov 2;134(1):37–42. doi: 10.1016/0014-5793(81)80545-5. [DOI] [PubMed] [Google Scholar]
- White S. H., Wimley W. C., Selsted M. E. Structure, function, and membrane integration of defensins. Curr Opin Struct Biol. 1995 Aug;5(4):521–527. doi: 10.1016/0959-440x(95)80038-7. [DOI] [PubMed] [Google Scholar]
- Williams K. A., Deber C. M. Proline residues in transmembrane helices: structural or dynamic role? Biochemistry. 1991 Sep 17;30(37):8919–8923. doi: 10.1021/bi00101a001. [DOI] [PubMed] [Google Scholar]
- Wimley W. C., Selsted M. E., White S. H. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores. Protein Sci. 1994 Sep;3(9):1362–1373. doi: 10.1002/pro.5560030902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wimley W. C., White S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol. 1996 Oct;3(10):842–848. doi: 10.1038/nsb1096-842. [DOI] [PubMed] [Google Scholar]
- Wimley W. C., White S. H. Membrane partitioning: distinguishing bilayer effects from the hydrophobic effect. Biochemistry. 1993 Jun 29;32(25):6307–6312. doi: 10.1021/bi00076a001. [DOI] [PubMed] [Google Scholar]
- Wimley W. C., White S. H. Quantitation of electrostatic and hydrophobic membrane interactions by equilibrium dialysis and reverse-phase HPLC. Anal Biochem. 1993 Sep;213(2):213–217. doi: 10.1006/abio.1993.1411. [DOI] [PubMed] [Google Scholar]
- Woody R. W. Contributions of tryptophan side chains to the far-ultraviolet circular dichroism of proteins. Eur Biophys J. 1994;23(4):253–262. doi: 10.1007/BF00213575. [DOI] [PubMed] [Google Scholar]
- Woolley G. A., Dunn A., Wallace B. A. Gramicidin-lipid interactions induce specific tryptophan side-chain conformations. Biochem Soc Trans. 1992 Nov;20(4):864–867. doi: 10.1042/bst0200864. [DOI] [PubMed] [Google Scholar]
- van Abel R. J., Tang Y. Q., Rao V. S., Dobbs C. H., Tran D., Barany G., Selsted M. E. Synthesis and characterization of indolicidin, a tryptophan-rich antimicrobial peptide from bovine neutrophils. Int J Pept Protein Res. 1995 May;45(5):401–409. doi: 10.1111/j.1399-3011.1995.tb01055.x. [DOI] [PubMed] [Google Scholar]
- von Heijne G. Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature. 1989 Oct 5;341(6241):456–458. doi: 10.1038/341456a0. [DOI] [PubMed] [Google Scholar]