Abstract
1. Addition of N-ethylmaleimide to rat liver mitochondria respiring with succinate as substrate decreases both the initial rate of Ca2+ transport and the ability of mitochondria to retain Ca2+. As a result, Ca2+ begins to leave the mitochondria soon after it has entered. Half-maximal effects occur at an N-ethylmaleimide concentration of about 100nmol/mg of protein. 2. The efflux of Ca2+ induced by N-ethylmaleimide is not prevented by Mg2+ or by Ruthenium Red at concentrations known to prevent Ca2+ efflux when exogenous phosphate also is present. Swelling of mitochondria does not accompany N-ethylmaleimide-induced Ca2+ efflux. 3. Addition of Ca2+ to rat liver mitochondria in the presence of N-ethylmaleimide produces an immediate decrease in ΔE (membrane potential), which decreases further to only a slight extent over the next 8min. Concomitant with this is an immediate increase and then levelling off of the −59ΔpH (transmembrane pH gradient). 4. Preincubation of rat liver mitochondria with p-chloromercuribenzenesulphonate, which by contrast with N-ethylmaleimide is unable to penetrate the inner mitochondrial membrane, also prevents Ca2+ retention. The ΔE and −59ΔpH respond to Ca2+ addition in a manner similar to that which occurs when N-ethylmaleimide is present. Subsequent addition of mercaptoethanol produces an immediate increase in both ΔE and −59ΔpH. At the same time Ca2+ is rapidly accumulated by the organelles. 5. The above data are interpreted as indicating that under the conditions of Ca2+ efflux seen here, the mitochondria retain their functional integrity. This contrasts with the uncoupling effect of Ca2+ seen in the presence of Pi, which generally leads to a loss of mitochondrial integrity. We suggest that a unique mechanism of Ca2+ cycling is able to take place when mitochondria have been treated with N-ethylmaleimide.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akerman K. E., Wikström M. K., Saris N. E. Effect of inhibitors on the sigmoidicity of the calcium ion transport kinetics in rat liver mitochondria. Biochim Biophys Acta. 1977 Jan 21;464(2):287–294. doi: 10.1016/0005-2736(77)90004-9. [DOI] [PubMed] [Google Scholar]
- BRADLEY L. B., JACOB M., JACOBS E. E., SANADI D. R. Uncoupling of oxidative phosphorylation by cadmium ion. J Biol Chem. 1956 Nov;223(1):147–156. [PubMed] [Google Scholar]
- Brand M. D., Chen C. H., Lehninger A. L. Stoichiometry of H+ ejection during respiration-dependent accumulation of Ca2+ by rat liver mitochondria. J Biol Chem. 1976 Feb 25;251(4):968–974. [PubMed] [Google Scholar]
- Bygrave F. L. Mitochondria and the control of intracellular calcium. Biol Rev Camb Philos Soc. 1978 Feb;53(1):43–79. doi: 10.1111/j.1469-185x.1978.tb00992.x. [DOI] [PubMed] [Google Scholar]
- Bygrave F. L., Ramachandran C., Smith R. L. On the mechanism by which inorganic phosphate stimulates mitochondrial calcium transport. FEBS Lett. 1977 Nov 1;83(1):155–158. doi: 10.1016/0014-5793(77)80663-7. [DOI] [PubMed] [Google Scholar]
- Bygrave F. L., Reed K. C. On the role of the adenosine diphosphate-adenosine triphosphate exchange reaction in oxidative phosphorylation: Effect of calcium. FEBS Lett. 1970 May 1;7(4):339–342. doi: 10.1016/0014-5793(70)80200-9. [DOI] [PubMed] [Google Scholar]
- CHAPPELL J. B., CROFTS A. R. CALCIUM ION ACCUMULATION AND VOLUME CHANGES OF ISOLATED LIVER MITOCHONDRIA. CALCIUM ION-INDUCED SWELLING. Biochem J. 1965 May;95:378–386. doi: 10.1042/bj0950378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coty W. A., Pedersen P. L. Phosphate transport in rat liver mitochondria. Kinetics and energy requirements. J Biol Chem. 1974 Apr 25;249(8):2593–2598. [PubMed] [Google Scholar]
- DRAHOTA Z., CARAFOLI E., ROSSI C. S., GAMBLE R. L., LEHNINGER A. L. THE STEADY STATE MAINTENANCE OF ACCUMULATED CA++ IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2712–2720. [PubMed] [Google Scholar]
- Dorman D. M., Barritt G. J., Bygrave F. L. Stimulation of hepatic mitochondrial calcium transport by elevated plasma insulin concentrations. Biochem J. 1975 Sep;150(3):389–395. doi: 10.1042/bj1500389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ERNSTER L. Organization of mitochondrial DPN-linked systems. I. Reversible uncoupling of oxidative phosphorylation. Exp Cell Res. 1956 Jun;10(3):704–720. doi: 10.1016/0014-4827(56)90048-9. [DOI] [PubMed] [Google Scholar]
- GREENAWALT J. W., ROSSI C. S., LEHNINGER A. L. EFFECT OF ACTIVE ACCUMULATION OF CALCIUM AND PHOSPHATE IONS ON THE STRUCTURE OF RAT LIVER MITOCHONDRIA. J Cell Biol. 1964 Oct;23:21–38. doi: 10.1083/jcb.23.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaudemer Y., Latruffe N. Evidence for penetrant and non-penetrant thiol reagents and their use in the location of rat liver mitochondrial D(-)-beta-hydroxybutyrate dehydrogenase. FEBS Lett. 1975 Jun 1;54(1):30–34. doi: 10.1016/0014-5793(75)81061-1. [DOI] [PubMed] [Google Scholar]
- Harris E. J., Zaba B. The phosphate requirement for Ca2+-uptake by heart and liver mitochondria. FEBS Lett. 1977 Jul 15;79(2):284–290. doi: 10.1016/0014-5793(77)80804-1. [DOI] [PubMed] [Google Scholar]
- Haugaard N., Haugaard E. S., Lee N. H. Role of magnesium, phosphate and ATP in the regulation of calcium uptake by rat-liver mitochondria. Proc K Ned Akad Wet C. 1969;72(1):1–15. [PubMed] [Google Scholar]
- Haugaard N., Lee N. H., Kostrzewa R., Horn R. S., Haugaard E. S. The role of sulfhydryl groups in oxidative phosphorylation and ion transport by rat liver mitochrondia. Biochim Biophys Acta. 1969 Feb 25;172(2):198–204. doi: 10.1016/0005-2728(69)90063-2. [DOI] [PubMed] [Google Scholar]
- Hutson S. M., Pfeiffer D. R., Lardy H. A. Effect of cations and anions on the steady state kinetics of energy-dependent Ca2+ transport in rat liver mitochondria. J Biol Chem. 1976 Sep 10;251(17):5251–5258. [PubMed] [Google Scholar]
- Hutson S. M. Steady state kinetics of energy-dependent Ca2+ uptake in rat liver mitochondria. J Biol Chem. 1977 Jul 10;252(13):4539–4545. [PubMed] [Google Scholar]
- Johnson R. N., Chappell J. B. The transport of inorganic phosphate by the mitochondrial dicarboxylate carrier. Biochem J. 1973 Jul;134(3):769–774. doi: 10.1042/bj1340769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klingenberg M., Durand R., Guérin B. Analysis of the reactivity of SH-reagents with the mitochondrial phosphate carrier. Eur J Biochem. 1974 Feb 15;42(1):135–150. doi: 10.1111/j.1432-1033.1974.tb03323.x. [DOI] [PubMed] [Google Scholar]
- Le Quoc D., Le Quoc K., Gaudemer Y. Energy-dependent variation of thiol groups reactivity or accessibility in rat liver mitochondria, revealed by measurements of labelled thiol reagents incorporation. Biochem Biophys Res Commun. 1976 Jan 12;68(1):106–113. doi: 10.1016/0006-291x(76)90016-4. [DOI] [PubMed] [Google Scholar]
- Leblanc P., Caluser H. ADP-dependent inhibition of sarcosomal adenine nucleotide translocase by N-ethylmaleimide. FEBS Lett. 1972 Jun 1;23(1):107–113. doi: 10.1016/0014-5793(72)80296-5. [DOI] [PubMed] [Google Scholar]
- Lehninger A. L. Role of phosphate and other proton-donating anions in respiration-coupled transport of Ca2+ by mitochondria. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1520–1524. doi: 10.1073/pnas.71.4.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luthra R., Olson M. S. The inhibition of calcium uptake and release by rat liver mitochondria by ruthenium red. FEBS Lett. 1977 Sep 1;81(1):142–146. doi: 10.1016/0014-5793(77)80947-2. [DOI] [PubMed] [Google Scholar]
- Meijer A. J., Groot G. S.P., Tager J. M. Effect of sulphydryl-blocking reagents on mitochondrial anion-exchange reactions involving phosphate. FEBS Lett. 1970 May 11;8(1):41–44. doi: 10.1016/0014-5793(70)80220-4. [DOI] [PubMed] [Google Scholar]
- Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. doi: 10.1111/j.1469-185x.1966.tb01501.x. [DOI] [PubMed] [Google Scholar]
- Mitchell P., Moyle J. Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. Eur J Biochem. 1969 Feb;7(4):471–484. doi: 10.1111/j.1432-1033.1969.tb19633.x. [DOI] [PubMed] [Google Scholar]
- Moyle J., Mitchell P. Electric charge stoicheiometry of calcium translocation in rat liver mitochondria. FEBS Lett. 1977 Feb 1;73(2):131–136. doi: 10.1016/0014-5793(77)80964-2. [DOI] [PubMed] [Google Scholar]
- Newsholme E. A., Crabtree B. Substrate cycles in metabolic regulation and in heat generation. Biochem Soc Symp. 1976;(41):61–109. [PubMed] [Google Scholar]
- Nicholls D. G. The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem. 1974 Dec 16;50(1):305–315. doi: 10.1111/j.1432-1033.1974.tb03899.x. [DOI] [PubMed] [Google Scholar]
- Pozzan T., Bragadin M., Azzone G. F. Disequilibrium between steady-state Ca2+ accumulation ratio and membrane potential in mitochondria. Pathway and role of Ca2+ efflux. Biochemistry. 1977 Dec 13;16(25):5618–5625. doi: 10.1021/bi00644a036. [DOI] [PubMed] [Google Scholar]
- Puskin J. S., Gunter T. E., Gunter K. K., Russell P. R. Evidence for more than one Ca2+ transport mechanism in mitochondria. Biochemistry. 1976 Aug 24;15(17):3834–3842. doi: 10.1021/bi00662a029. [DOI] [PubMed] [Google Scholar]
- Reed K. C., Bygrave F. L. A kinetic study of mitochondrial calcium transport. Eur J Biochem. 1975 Jul 15;55(3):497–504. doi: 10.1111/j.1432-1033.1975.tb02187.x. [DOI] [PubMed] [Google Scholar]
- Reed K. C., Bygrave F. L. The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochem J. 1974 May;140(2):143–155. doi: 10.1042/bj1400143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SZARKOWSKA L., KLINGENBERG M. ON THE ROLE OF UBIQUINONE IN MITOCHONDRIA. SPECTROPHOTOMETRIC AND CHEMICAL MEASUREMENTS OF ITS REDOX REACTIONS. Biochem Z. 1963;338:674–697. [PubMed] [Google Scholar]
- Sabadie-Pialoux N., Gautheron D. Free--SH variations during ATP synthesis by oxidative phosphorylation in heart muscle mitochondria. Biochim Biophys Acta. 1971 Apr 6;234(1):9–15. doi: 10.1016/0005-2728(71)90123-x. [DOI] [PubMed] [Google Scholar]
- Scott K. M., Knight V. A., Settlemire C. T., Brierley G. P. Differential effects of mercurial reagents on membrane thiols and on the permeability of the heart mitochondrion. Biochemistry. 1970 Feb 17;9(4):714–724. doi: 10.1021/bi00806a003. [DOI] [PubMed] [Google Scholar]
- Smith R. L., Bygrave F. L. Changes in the response of mitochondrial calcium transport to exogenous phosphate during development in flight muscle of the sheep blowfly Lucilla cuprina. Biochem J. 1978 Jan 15;170(1):81–85. doi: 10.1042/bj1700081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sordahl L. A. Effects of magnesium, Ruthenium red and the antibiotic ionophore A-23187 on initial rates of calcium uptake and release by heart mitochondria. Arch Biochem Biophys. 1975 Mar;167(1):104–115. doi: 10.1016/0003-9861(75)90446-4. [DOI] [PubMed] [Google Scholar]
- Vignais P. V., Vignais P. M. Effect of SH reagents on atractyloside binding to mitochondria and ADP translocation. Potentiation by ADP and its prevention by uncoupler FCCP. FEBS Lett. 1972 Oct 1;26(1):27–31. doi: 10.1016/0014-5793(72)80534-9. [DOI] [PubMed] [Google Scholar]