Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1989 Sep;416:1–18. doi: 10.1113/jphysiol.1989.sp017745

Alterations in [Ca2+]i mediated by sodium-calcium exchange in smooth muscle cells isolated from the guinea-pig ureter.

P I Aaronson 1, C D Benham 1
PMCID: PMC1189199  PMID: 2607445

Abstract

1. Sodium-calcium exchange was studied in single enzymatically isolated cells of the guinea-pig ureter using the Ca2(+)-sensitive fluorescent dye Indo-1 to monitor the intracellular Ca2+ concentration ([Ca2+]i). Patch pipettes containing Indo-1 were used to introduce the dye into cells, to set the intracellular Na+ concentration ([Na+]i) and control the membrane potential during experiments. 2. With [Na+]i set at 11-12 mM and a membrane potential of -60 or -70 mV, brief depolarization of ureter cells elicited typical voltage-gated inward currents associated with rapid increases in [Ca2+]i which showed a bell-shaped potential dependence. If Ca2+ currents were blocked with nifedipine, depolarization led to slower rises in [Ca2+]i. The rates and amplitudes of these increased monotonically with progressively larger depolarizations up to +120 mV. 3. The nifedipine-resistant rises in [Ca2+]i elicited by depolarization were potentiated when the extracellular sodium concentration ([Na+]o) was reduced. Basal levels of [Ca2+]i also increased as [Na+]o was reduced, although the dependence of this effect on [Na+]o was smaller than would be predicted if [Ca2+]i was set only by a Na(+)-Ca2+ exchange process. 4. The nifedipine-insensitive rises in [Ca2+]i elicited by depolarization were potentiated at higher basal levels of [Ca2+]i. 5. The ability of cells to reduce [Ca2+]i rapidly following Ca2+ loading during voltage-gated transients was markedly inhibited if the Na+ concentration gradient was reversed, but was little affected if the Na+ gradient was decreased by 25 or 50%. Recovery from a Ca2+ load caused by reversal of the Na+ gradient could be induced by removal of Cao2+ in the continuing absence of Nao+, indicating the importance of a Na(+)-independent [Ca2+]i-lowering system. 6. The results demonstrate that Na(+)-Ca2+ exchange can modulate [Ca2+]i when [Na+]i and the membrane potential are set at or near their physiological levels in these smooth muscle cells. [Ca2+]i does not, however, appear to be markedly sensitive to the Na+ concentration gradient under the conditions employed for these experiments, suggesting that a Na(+)-independent Ca2+ extrusion system is mainly responsible for regulating [Ca2+]i under normal conditions.

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaronson P. I., Jones A. W. Ca dependence of Na influx during treatment of rabbit aorta with NE and high K solutions. Am J Physiol. 1988 Jan;254(1 Pt 1):C75–C83. doi: 10.1152/ajpcell.1988.254.1.C75. [DOI] [PubMed] [Google Scholar]
  2. Aaronson P., van Breemen C. Effects of sodium gradient manipulation upon cellular calcium, 45Ca fluxes and cellular sodium in the guinea-pig taenia coli. J Physiol. 1981;319:443–461. doi: 10.1113/jphysiol.1981.sp013920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Abbott A. Interrelationship between Na+ and Ca2+ metabolism in hypertension. Trends Pharmacol Sci. 1988 Apr;9(4):111–113. doi: 10.1016/0165-6147(88)90182-4. [DOI] [PubMed] [Google Scholar]
  4. Aickin C. C., Brading A. F., Burdyga T. V. Evidence for sodium-calcium exchange in the guinea-pig ureter. J Physiol. 1984 Feb;347:411–430. doi: 10.1113/jphysiol.1984.sp015073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Aickin C. C., Brading A. F., Walmsley D. An investigation of sodium-calcium exchange in the smooth muscle of guinea-pig ureter. J Physiol. 1987 Oct;391:325–346. doi: 10.1113/jphysiol.1987.sp016741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Aickin C. C. Investigation of factors affecting the intracellular sodium activity in the smooth muscle of guinea-pig ureter. J Physiol. 1987 Apr;385:483–505. doi: 10.1113/jphysiol.1987.sp016503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ashida T., Blaustein M. P. Regulation of cell calcium and contractility in mammalian arterial smooth muscle: the role of sodium-calcium exchange. J Physiol. 1987 Nov;392:617–635. doi: 10.1113/jphysiol.1987.sp016800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Baker P. F., Blaustein M. P., Hodgkin A. L., Steinhardt R. A. The influence of calcium on sodium efflux in squid axons. J Physiol. 1969 Feb;200(2):431–458. doi: 10.1113/jphysiol.1969.sp008702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Barcenas-Ruiz L., Beuckelmann D. J., Wier W. G. Sodium-calcium exchange in heart: membrane currents and changes in [Ca2+]i. Science. 1987 Dec 18;238(4834):1720–1722. doi: 10.1126/science.3686010. [DOI] [PubMed] [Google Scholar]
  10. Benham C. D., Bolton T. B. Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit. J Physiol. 1986 Dec;381:385–406. doi: 10.1113/jphysiol.1986.sp016333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Benham C. D. Voltage-gated and agonist-mediated rises in intracellular Ca2+ in rat clonal pituitary cells (GH3) held under voltage clamp. J Physiol. 1989 Aug;415:143–158. doi: 10.1113/jphysiol.1989.sp017716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Blaustein M. P., Hodgkin A. L. The effect of cyanide on the efflux of calcium from squid axons. J Physiol. 1969 Feb;200(2):497–527. doi: 10.1113/jphysiol.1969.sp008704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Blaustein M. P. Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am J Physiol. 1977 May;232(5):C165–C173. doi: 10.1152/ajpcell.1977.232.5.C165. [DOI] [PubMed] [Google Scholar]
  14. Burdyga T. V., Magura I. S. Effects of caffeine on the electrical and mechanical activity of guinea-pig ureter smooth muscle. Gen Physiol Biophys. 1986 Dec;5(6):581–591. [PubMed] [Google Scholar]
  15. Caroni P., Carafoli E. The regulation of the Na+ -Ca2+ exchanger of heart sarcolemma. Eur J Biochem. 1983 May 16;132(3):451–460. doi: 10.1111/j.1432-1033.1983.tb07383.x. [DOI] [PubMed] [Google Scholar]
  16. Cobbold P. H., Rink T. J. Fluorescence and bioluminescence measurement of cytoplasmic free calcium. Biochem J. 1987 Dec 1;248(2):313–328. doi: 10.1042/bj2480313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Colquhoun D., Neher E., Reuter H., Stevens C. F. Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature. 1981 Dec 24;294(5843):752–754. doi: 10.1038/294752a0. [DOI] [PubMed] [Google Scholar]
  18. DiFrancesco D., Noble D. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos Trans R Soc Lond B Biol Sci. 1985 Jan 10;307(1133):353–398. doi: 10.1098/rstb.1985.0001. [DOI] [PubMed] [Google Scholar]
  19. DiPolo R., Beaugé L. The calcium pump and sodium-calcium exchange in squid axons. Annu Rev Physiol. 1983;45:313–324. doi: 10.1146/annurev.ph.45.030183.001525. [DOI] [PubMed] [Google Scholar]
  20. Droogmans G., Casteels R. Sodium and calcium interactions in vascular smooth muscle cells of the rabbit ear artery. J Gen Physiol. 1979 Jul;74(1):57–70. doi: 10.1085/jgp.74.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Eisner D. A., Lederer W. J. Na-Ca exchange: stoichiometry and electrogenicity. Am J Physiol. 1985 Mar;248(3 Pt 1):C189–C202. doi: 10.1152/ajpcell.1985.248.3.C189. [DOI] [PubMed] [Google Scholar]
  22. Furukawa K., Tawada Y., Shigekawa M. Regulation of the plasma membrane Ca2+ pump by cyclic nucleotides in cultured vascular smooth muscle cells. J Biol Chem. 1988 Jun 15;263(17):8058–8065. [PubMed] [Google Scholar]
  23. Gray P. T. Oscillations of free cytosolic calcium evoked by cholinergic and catecholaminergic agonists in rat parotid acinar cells. J Physiol. 1988 Dec;406:35–53. doi: 10.1113/jphysiol.1988.sp017367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  25. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  26. Hume J. R., Uehara A. Properties of "creep currents" in single frog atrial cells. J Gen Physiol. 1986 Jun;87(6):833–855. doi: 10.1085/jgp.87.6.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kimura J., Miyamae S., Noma A. Identification of sodium-calcium exchange current in single ventricular cells of guinea-pig. J Physiol. 1987 Mar;384:199–222. doi: 10.1113/jphysiol.1987.sp016450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kimura J., Noma A., Irisawa H. Na-Ca exchange current in mammalian heart cells. Nature. 1986 Feb 13;319(6054):596–597. doi: 10.1038/319596a0. [DOI] [PubMed] [Google Scholar]
  29. Larsen F. L., Hinds T. R., Vincenzi F. F. On the red blood cell Ca2+-pump: an estimate of stoichiometry. J Membr Biol. 1978 Jul 18;41(4):361–376. doi: 10.1007/BF01872000. [DOI] [PubMed] [Google Scholar]
  30. Lipp P., Pott L. Voltage dependence of sodium-calcium exchange current in guinea-pig atrial myocytes determined by means of an inhibitor. J Physiol. 1988 Sep;403:355–366. doi: 10.1113/jphysiol.1988.sp017253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ma T. S., Bose D. Sodium in smooth muscle relaxation. Am J Physiol. 1977 Jan;232(1):C59–C66. doi: 10.1152/ajpcell.1977.232.1.C59. [DOI] [PubMed] [Google Scholar]
  32. Mechmann S., Pott L. Identification of Na-Ca exchange current in single cardiac myocytes. Nature. 1986 Feb 13;319(6054):597–599. doi: 10.1038/319597a0. [DOI] [PubMed] [Google Scholar]
  33. Morel N., Godfraind T. Na-Ca exchange in heart and smooth muscle microsomes. Arch Int Pharmacodyn Ther. 1982 Aug;258(2):319–321. [PubMed] [Google Scholar]
  34. Mullins L. J. The generation of electric currents in cardiac fibers by Na/Ca exchange. Am J Physiol. 1979 Mar;236(3):C103–C110. doi: 10.1152/ajpcell.1979.236.3.C103. [DOI] [PubMed] [Google Scholar]
  35. Mulvany M. J., Aalkjaer C., Petersen T. T. Intracellular sodium, membrane potential, and contractility of rat mesenteric small arteries. Circ Res. 1984 Jun;54(6):740–749. doi: 10.1161/01.res.54.6.740. [DOI] [PubMed] [Google Scholar]
  36. Nabel E. G., Berk B. C., Brock T. A., Smith T. W. Na+-Ca2+ exchange in cultured vascular smooth muscle cells. Circ Res. 1988 Mar;62(3):486–493. doi: 10.1161/01.res.62.3.486. [DOI] [PubMed] [Google Scholar]
  37. Ozaki H., Urakawa N. Effects of K-free solution on tension development and Na content in vascular smooth muscles isolated from guinea-pig, rat and rabbit. Pflugers Arch. 1981 Mar;389(3):189–193. doi: 10.1007/BF00584778. [DOI] [PubMed] [Google Scholar]
  38. Petersen T. T., Mulvany M. J. Effect of sodium gradient on the rate of relaxation of rat mesenteric small arteries from potassium contractures. Blood Vessels. 1984;21(6):279–289. doi: 10.1159/000158530. [DOI] [PubMed] [Google Scholar]
  39. Reuter H., Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol. 1968 Mar;195(2):451–470. doi: 10.1113/jphysiol.1968.sp008467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Shuba M. F. The effect of sodium-free and potassium-free solutions, ionic current inhibitors and ouabain on electrophysiological properties of smooth muscle of guinea-pig ureter. J Physiol. 1977 Jan;264(3):837–851. doi: 10.1113/jphysiol.1977.sp011697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Smith J. B., Brock T. A. Analysis of angiotensin-stimulated sodium transport in cultured smooth muscle cells from rat aorta. J Cell Physiol. 1983 Mar;114(3):284–290. doi: 10.1002/jcp.1041140306. [DOI] [PubMed] [Google Scholar]
  42. Smith J. B., Cragoe E. J., Jr, Smith L. Na+/Ca2+ antiport in cultured arterial smooth muscle cells. Inhibition by magnesium and other divalent cations. J Biol Chem. 1987 Sep 5;262(25):11988–11994. [PubMed] [Google Scholar]
  43. Van Breemen C., Aaronson P., Loutzenhiser R. Sodium-calcium interactions in mammalian smooth muscle. Pharmacol Rev. 1978 Jun;30(2):167–208. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES