Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1988 Oct;404:669–682. doi: 10.1113/jphysiol.1988.sp017312

Gastric vasodilatation and vasoactive intestinal peptide output in response to vagal stimulation in the dog.

S Ito 1, A Ohga 1, T Ohta 1
PMCID: PMC1190848  PMID: 2908127

Abstract

1. Gastric vasodilatation, relaxation, and vasoactive intestinal peptide (VIP) output in response to vagal stimulation were studied in anaesthetized dogs. 2. Stimulation of the peripheral end of the vagus nerve (10 Hz, 40 V, 0.5 ms) normally evoked a gastric contraction, but caused relaxation in atropinized dogs. There was no detectable difference between the electrical thresholds for activation of the vagal preganglionic excitatory and inhibitory motor fibres. 3. Vagal stimulation also evoked gastric vasodilatation, which was blocked by hexamethonium but not by combined muscarinic and adrenergic blockade. Vagal fibres evoking vasodilatation had higher thresholds to electrical stimulation than those evoking motor responses. 4. Both gastric motor responses to vagal stimulation increased with increasing frequency up to 10 Hz and a plateau between 10 and 40 Hz, but the vasodilator response was significantly reduced above 20 Hz. Vagal stimulation at 10 Hz caused an increase in gastric venous VIP output which was significantly reduced at 40 Hz. 5. Low-intensity vagal stimulation (10 Hz, 40 V, 0.05 ms) elicited gastric relaxation (40% of a maximum), with no release of VIP or gastric vasodilatation. 6. It is concluded that release of VIP in response to stimulation of the vagal innervation to the stomach in the dog is primarily vasodilating in action.

Full text

PDF
669

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamsson H. Studies on the inhibitory nervous control of gastric motility. Acta Physiol Scand Suppl. 1973;390:1–38. [PubMed] [Google Scholar]
  2. Andersson P. O., Bloom S. R., Edwards A. V., Järhult J., Mellander S. Neural vasodilator control in the rectum of the cat and its possible mediation by vasoactive intestinal polypeptide. J Physiol. 1983 Nov;344:49–67. doi: 10.1113/jphysiol.1983.sp014923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andrews P. L., Lawes I. N. Characteristics of the vagally driven non-adrenergic, non-cholinergic inhibitory innervation of ferret gastric corpus. J Physiol. 1985 Jun;363:1–20. doi: 10.1113/jphysiol.1985.sp015692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Andrews P. L., Scratcherd T. The gastric motility patterns induced by direct and reflex excitation of the vagus nerves in the anaesthetized ferret. J Physiol. 1980 May;302:363–378. doi: 10.1113/jphysiol.1980.sp013248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bloom S. R., Edwards A. V. Effects of autonomic stimulation on the release of vasoactive intestinal peptide from the gastrointestinal tract in the calf. J Physiol. 1980 Feb;299:437–452. doi: 10.1113/jphysiol.1980.sp013135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bornstein J. C., Costa M., Furness J. B. Synaptic inputs to immunohistochemically identified neurones in the submucous plexus of the guinea-pig small intestine. J Physiol. 1986 Dec;381:465–482. doi: 10.1113/jphysiol.1986.sp016339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Costa M., Furness J. B. The origins, pathways and terminations of neurons with VIP-like immunoreactivity in the guinea-pig small intestine. Neuroscience. 1983 Apr;8(4):665–676. doi: 10.1016/0306-4522(83)90002-7. [DOI] [PubMed] [Google Scholar]
  8. D'Orléans-Juste P., Dion S., Mizrahi J., Regoli D. Effects of peptides and non-peptides on isolated arterial smooth muscles: role of endothelium. Eur J Pharmacol. 1985 Aug 7;114(1):9–21. doi: 10.1016/0014-2999(85)90515-1. [DOI] [PubMed] [Google Scholar]
  9. Davies J. M., Williams K. I. Endothelial-dependent relaxant effects of vaso-active intestinal polypeptide and arachidonic acid in rat aortic strips. Prostaglandins. 1984 Feb;27(2):195–202. doi: 10.1016/0090-6980(84)90073-x. [DOI] [PubMed] [Google Scholar]
  10. Fahrenkrug J., Galbo H., Holst J. J., Schaffalitzky de Muckadell O. B. Influence of the autonomic nervous system on the release of vasoactive intestinal polypeptide from the porcine gastrointestinal tract. J Physiol. 1978 Jul;280:405–422. doi: 10.1113/jphysiol.1978.sp012391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fahrenkrug J., Haglund U., Jodal M., Lundgren O., Olbe L., de Muckadell O. B. Nervous release of vasoactive intestinal polypeptide in the gastrointestinal tract of cats: possible physiological implications. J Physiol. 1978 Nov;284:291–305. doi: 10.1113/jphysiol.1978.sp012541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Greenwell J. R., Scratcherd T. The kinetics of pancreatic amylase secretion and its relationship to volume flow and electrical conductance in the anaesthetized cat. J Physiol. 1974 Jun;239(3):443–457. doi: 10.1113/jphysiol.1974.sp010577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HARPER A. A., KIDD C., SCRATCHERD T. Vago-vagal reflex effects on gastric and pancreatic secretion and gastrointestinal motility. J Physiol. 1959 Oct;148:417–436. doi: 10.1113/jphysiol.1959.sp006297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hickson J. C. The secretory and vascular response to nervous and hormonal stimulation in the pancreas of the pig. J Physiol. 1970 Feb;206(2):299–322. doi: 10.1113/jphysiol.1970.sp009014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ignarro L. J., Byrns R. E., Buga G. M., Wood K. S. Mechanisms of endothelium-dependent vascular smooth muscle relaxation elicited by bradykinin and VIP. Am J Physiol. 1987 Nov;253(5 Pt 2):H1074–H1082. doi: 10.1152/ajpheart.1987.253.5.H1074. [DOI] [PubMed] [Google Scholar]
  16. Ito S., Ohga A., Ohta T. Gastric relaxation and vasoactive intestinal peptide output in response to reflex vagal stimulation in the dog. J Physiol. 1988 Oct;404:683–693. doi: 10.1113/jphysiol.1988.sp017313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ito S., Ohta T., Nakazato Y., Ohga A., Yanaihara N. Effects of avian pancreatic peptide on smooth muscle relaxations by vasoactive intestinal peptide and inhibitory nerve stimulation. Jpn J Pharmacol. 1986 Mar;40(3):423–434. doi: 10.1254/jjp.40.423. [DOI] [PubMed] [Google Scholar]
  18. Jansson G., Lundgren O., Martinson J. Neurohormonal control of gastric blood flow. Gastroenterology. 1970 Mar;58(3):425–429. [PubMed] [Google Scholar]
  19. Martinson J. The effect of graded vagal stimulation on gastric motility, secretion and blood flow in the cat. Acta Physiol Scand. 1965 Dec;65(4):300–309. doi: 10.1111/j.1748-1716.1965.tb04277.x. [DOI] [PubMed] [Google Scholar]
  20. Morishita T., Guth P. H. Vagal nerve stimulation causes noncholinergic dilatation of gastric arterioles. Am J Physiol. 1986 May;250(5 Pt 1):G660–G664. doi: 10.1152/ajpgi.1986.250.5.G660. [DOI] [PubMed] [Google Scholar]
  21. Ohga A., Nakazato Y., Saito K. An analysis of the vago-vagal reflex relaxation of the stomach. Nihon Seirigaku Zasshi. 1969;31(2):92–93. [PubMed] [Google Scholar]
  22. Ohga A., Nakazato Y., Saito K. Considerations of the efferent nervous mechanism of the vago-vagal reflex relaxation of the stomach in the dog. Jpn J Pharmacol. 1970 Mar;20(1):116–130. doi: 10.1254/jjp.20.116. [DOI] [PubMed] [Google Scholar]
  23. Ohta T., Nakazato Y., Ohga A. Reflex control of the gastric motility by the vagus and splanchnic nerves in the guinea pig in vivo. J Auton Nerv Syst. 1985 Oct;14(2):137–149. doi: 10.1016/0165-1838(85)90071-2. [DOI] [PubMed] [Google Scholar]
  24. Schoeffter P., Stoclet J. C. Effect of vasoactive intestinal polypeptide (VIP) on cyclic AMP level and relaxation in rat isolated aorta. Eur J Pharmacol. 1985 Feb 26;109(2):275–279. doi: 10.1016/0014-2999(85)90430-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES