Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1984 Oct;355:119–135. doi: 10.1113/jphysiol.1984.sp015410

The effect of calcium ions on the glutamate response and its desensitization in crayfish muscle fibres.

M Thieffry
PMCID: PMC1193482  PMID: 6092621

Abstract

The responses of crayfish muscle fibres to bath application or long ionophoresis of L-glutamate were studied in normal and low Ca2+ solutions. The smaller responses recorded in low Ca2+ solutions have characteristics suggesting a faster desensitization. Desensitization and recovery have complex kinetics. Desensitization is faster and recovery slower when external Ca2+ concentration is reduced. Both components of the recovery phase, which can be fitted by the sum of two exponentials, are affected by the external Ca2+ concentration. Recovery can be accelerated by external Ca2+ ionophoresis onto desensitized glutamate receptors. Responses to brief glutamate pulses of low intensity are not affected by Ca2+ reduction. For higher intensities, signs of desensitization are detectable early in the rising phase of the response. Concanavalin A (Con A) blocks both desensitization and Ca2+ dependence with similar time courses. Whether or not the preparation has been treated with Con A, the slowly rising responses recorded in isotonic Ca2+ do not show signs of desensitization. Con A causes a partial blockade of the glutamate response. The Ca2+ dependence of the glutamate response can be explained by the Ca2+ dependence of the desensitization process, the cation acting at ectocellular sites of the muscle membrane.

Full text

PDF
119

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anis N. A., Clark R. B., Gration K. A., Usherwood P. N. Influence of agonists on desensitization of glutamate receptors on locust muscle. J Physiol. 1981 Mar;312:345–364. doi: 10.1113/jphysiol.1981.sp013632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anwyl R., Narahashi T. Desensitization of the acetylcholine receptor of denervated rat soleus muscle and the effect of calcium. Br J Pharmacol. 1980 May;69(1):91–98. doi: 10.1111/j.1476-5381.1980.tb10886.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ashley C. C., Campbell A. K. Free-calcium and tension responses in single barnacle muscle fibres following the application of L-glutamate. Biochim Biophys Acta. 1978 Sep 22;512(2):429–435. doi: 10.1016/0005-2736(78)90265-1. [DOI] [PubMed] [Google Scholar]
  4. Barker J. L. Divalent cations: effects on post-synaptic pharmacology of invertebrate synapses. Brain Res. 1975 Jul 11;92(2):307–323. doi: 10.1016/0006-8993(75)90277-2. [DOI] [PubMed] [Google Scholar]
  5. Chesnut T. J. Two-component desensitization at the neuromuscular junction of the frog. J Physiol. 1983 Mar;336:229–241. doi: 10.1113/jphysiol.1983.sp014578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clark R. B., Gration K. A., Usherwood P. N. Influence of sodium and calcium ions and membrane potential on glutamate receptor desensitization. Comp Biochem Physiol C. 1982;72(1):1–7. doi: 10.1016/0306-4492(82)90196-4. [DOI] [PubMed] [Google Scholar]
  7. Dekin M. S. Permeability changes induced by L-glutamate at the crayfish neuromuscular junction. J Physiol. 1983 Aug;341:105–125. doi: 10.1113/jphysiol.1983.sp014795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dreyer F., Peper K. Iontophoretic application of acetylcholine: advantages of high resistance micropipettes in connection with an electronic current pump. Pflugers Arch. 1974 Apr 22;348(3):263–272. doi: 10.1007/BF00587417. [DOI] [PubMed] [Google Scholar]
  9. Dudel J. Kinetics of postsynaptic action of glutamate pulses applied iontophoretically through high resistance micropipettes. Pflugers Arch. 1975;356(4):329–346. doi: 10.1007/BF00580006. [DOI] [PubMed] [Google Scholar]
  10. Dudel J. Potentiation and desensitization after glutamate induced postsynaptic currents at the crayfish neuromuscular junction. Pflugers Arch. 1975;356(4):317–327. doi: 10.1007/BF00580005. [DOI] [PubMed] [Google Scholar]
  11. Dudel J. The effect of reduced calcium on quantal unit current and release at the crayfish neuromuscular junction. Pflugers Arch. 1981 Jul;391(1):35–40. doi: 10.1007/BF00580691. [DOI] [PubMed] [Google Scholar]
  12. Dudel J. The voltage dependence of the decay of the excitatory postsynaptic current and the effect of concanavalin A at the crayfish neuromuscular junction. J Physiol (Paris) 1979;75(6):601–604. [PubMed] [Google Scholar]
  13. Feltz A., Trautmann A. Desensitization at the frog neuromuscular junction: a biphasic process. J Physiol. 1982 Jan;322:257–272. doi: 10.1113/jphysiol.1982.sp014036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ishida M., Shinozaki H. Differential effects of diltiazem on glutamate potentials and excitatory junctional potentials at the crayfish neuromuscular junction. J Physiol. 1980 Jan;298:301–319. doi: 10.1113/jphysiol.1980.sp013082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KATZ B., THESLEFF S. A study of the desensitization produced by acetylcholine at the motor end-plate. J Physiol. 1957 Aug 29;138(1):63–80. doi: 10.1113/jphysiol.1957.sp005838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kawagoe R., Onodera K., Takeuchi A. On the quantal release of endogenous glutamate from the crayfish neuromuscular junction. J Physiol. 1982 Jan;322:529–539. doi: 10.1113/jphysiol.1982.sp014053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kawagoe R., Onodera K., Takeuchi A. Release of glutamate from the crayfish neuromuscular junction. J Physiol. 1981 Mar;312:225–236. doi: 10.1113/jphysiol.1981.sp013625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kehoe J. Transformation by concanavalin A of the response of molluscan neurones to L-glutamate. Nature. 1978 Aug 31;274(5674):866–869. doi: 10.1038/274866a0. [DOI] [PubMed] [Google Scholar]
  19. Lehouelleur J. Electrical properties of phasic and tonic muscle fibres of the abdominal flexor muscles in crayfish. J Physiol (Paris) 1978;74(8):675–686. [PubMed] [Google Scholar]
  20. Magazanik L. G., Vyskocil F. Dependence of acetylcholine desensitization on the membrane potential of frog muscle fibre and on the ionic changes in the medium. J Physiol. 1970 Oct;210(3):507–518. doi: 10.1113/jphysiol.1970.sp009223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mathers D. A. The influence of concanavalin A on glutamate-induced current fluctuations in locust muscle fibres. J Physiol. 1981 Mar;312:1–8. doi: 10.1113/jphysiol.1981.sp013611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mathers D. A., Usherwood P. N. Concanavalin A blocks desensitisation of glutamate receptors on insect muscle fibres. Nature. 1976 Feb 5;259(5542):409–411. doi: 10.1038/259409a0. [DOI] [PubMed] [Google Scholar]
  23. Miledi R. Intracellular calcium and desensitization of acetylcholine receptors. Proc R Soc Lond B Biol Sci. 1980 Sep 26;209(1176):447–452. doi: 10.1098/rspb.1980.0106. [DOI] [PubMed] [Google Scholar]
  24. Nistri A., Constanti A. Pharmacological characterization of different types of GABA and glutamate receptors in vertebrates and invertebrates. Prog Neurobiol. 1979;13(2):117–235. doi: 10.1016/0301-0082(79)90016-9. [DOI] [PubMed] [Google Scholar]
  25. Onodera K., Takeuchi A. Permeability changes produced by L-glutamate at the excitatory post-synaptic membrane of the crayfish muscle. J Physiol. 1976 Mar;255(3):669–685. doi: 10.1113/jphysiol.1976.sp011302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sarne Y. Desensitization to gamma-aminobutyric acid in crustacean muscle fibres. J Physiol. 1976 Jun;257(3):779–790. doi: 10.1113/jphysiol.1976.sp011397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Selverston A. I., Remler M. P. Neural geometry and activation of crayfish fast flexor motoneurons. J Neurophysiol. 1972 Nov;35(6):797–814. doi: 10.1152/jn.1972.35.6.797. [DOI] [PubMed] [Google Scholar]
  28. Shinozaki H., Ishida M. Glutamate potential : differences from the excitatory junctional potential revealed by diltiazem and concanavalin A in crayfish neuromuscular junction. J Physiol (Paris) 1979;75(6):623–627. [PubMed] [Google Scholar]
  29. Stettmeier H., Finger W., Dudel J. Effects of concanavalin A on glutamate operated postsynaptic channels in crayfish muscle. Pflugers Arch. 1983 Apr;397(1):20–24. doi: 10.1007/BF00585162. [DOI] [PubMed] [Google Scholar]
  30. TAKEUCHI A., TAKEUCHI N. THE EFFECT ON CRAYFISH MUSCLE OF IONTOPHORETICALLY APPLIED GLUTAMATE. J Physiol. 1964 Mar;170:296–317. doi: 10.1113/jphysiol.1964.sp007332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Thieffry M., Bruner J., Personne P. Effects of high calcium solutions on glutamate sensitivity of crayfish muscle fibres. Proc R Soc Lond B Biol Sci. 1980 Sep 26;209(1176):415–429. doi: 10.1098/rspb.1980.0103. [DOI] [PubMed] [Google Scholar]
  32. Thieffry M., Bruner J. Sensibilié des fibres musclaires d'Ecrevisse au glutamate et au médiateur natural dans des solutions pauvres en calcium. C R Acad Sci Hebd Seances Acad Sci D. 1978 Jun 19;286(24):1813–1816. [PubMed] [Google Scholar]
  33. Thieffry M. Concanavalin A blocks the Ca2+ -dependence of crayfish muscle fiber responses to glutamate. Brain Res. 1982 Jul 8;243(1):165–168. doi: 10.1016/0006-8993(82)91132-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES