Skip to main content
Genetics logoLink to Genetics
. 1994 Oct;138(2):499–510. doi: 10.1093/genetics/138.2.499

Comparative Mapping of Arabidopsis Thaliana and Brassica Oleracea Chromosomes Reveals Islands of Conserved Organization

S P Kowalski 1, T H Lan 1, K A Feldmann 1, A H Paterson 1
PMCID: PMC1206166  PMID: 7828831

Abstract

The chromosomes of Arabidopsis thaliana and Brassica oleracea have been extensively rearranged since the divergence of these species; however, conserved regions are evident. Eleven regions of conserved organization were detected, ranging from 3.7 to 49.6 cM in A. thaliana, spanning 158.2 cM (24.6%) of the A. thaliana genome, and 245 cM (29.9%) of the B. oleracea genome. At least 17 translocations and 9 inversions distinguish the genomes of A. thaliana and B. oleracea. In one case B. oleracea homoeologs show a common marker order, which is distinguished from the A. thaliana order by a rearrangement, indicating that the lineages of A. thaliana and B. oleracea diverged prior to chromosomal duplication in the Brassica lineage (for at least this chromosome). Some chromosomal segments in B. oleracea appear to be triplicated, indicating the need for reevaluation of a classical model for Brassica chromosome evolution by duplication. The distribution of duplicated loci mapped for about 13% of the DNA probes studied in A. thaliana suggests that ancient duplications may also have occurred in Arabidopsis. The degree of chromosomal divergence between A. thaliana and B. oleracea appears greater than that found in other confamilial species for which comparative maps are available.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arondel V., Lemieux B., Hwang I., Gibson S., Goodman H. M., Somerville C. R. Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science. 1992 Nov 20;258(5086):1353–1355. doi: 10.1126/science.1455229. [DOI] [PubMed] [Google Scholar]
  2. Bonierbale M. W., Plaisted R. L., Tanksley S. D. RFLP Maps Based on a Common Set of Clones Reveal Modes of Chromosomal Evolution in Potato and Tomato. Genetics. 1988 Dec;120(4):1095–1103. doi: 10.1093/genetics/120.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Helentjaris T., Weber D., Wright S. Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics. 1988 Feb;118(2):353–363. doi: 10.1093/genetics/118.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  5. McClintock B. The significance of responses of the genome to challenge. Science. 1984 Nov 16;226(4676):792–801. doi: 10.1126/science.15739260. [DOI] [PubMed] [Google Scholar]
  6. Meyerowitz E. M. Arabidopsis, a useful weed. Cell. 1989 Jan 27;56(2):263–269. doi: 10.1016/0092-8674(89)90900-8. [DOI] [PubMed] [Google Scholar]
  7. Nadeau J. H. Maps of linkage and synteny homologies between mouse and man. Trends Genet. 1989 Mar;5(3):82–86. doi: 10.1016/0168-9525(89)90031-0. [DOI] [PubMed] [Google Scholar]
  8. Nadeau J. H., Taylor B. A. Lengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci U S A. 1984 Feb;81(3):814–818. doi: 10.1073/pnas.81.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nam H. G., Giraudat J., Den Boer B., Moonan F., Loos WDB., Hauge B. M., Goodman H. M. Restriction Fragment Length Polymorphism Linkage Map of Arabidopsis thaliana. Plant Cell. 1989 Jul;1(7):699–705. doi: 10.1105/tpc.1.7.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Reiter R. S., Williams J. G., Feldmann K. A., Rafalski J. A., Tingey S. V., Scolnik P. A. Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1477–1481. doi: 10.1073/pnas.89.4.1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Stebbins G. L. Chromosomal variation and evolution. Science. 1966 Jun 10;152(3728):1463–1469. doi: 10.1126/science.152.3728.1463. [DOI] [PubMed] [Google Scholar]
  12. Tanksley S. D., Ganal M. W., Prince J. P., de Vicente M. C., Bonierbale M. W., Broun P., Fulton T. M., Giovannoni J. J., Grandillo S., Martin G. B. High density molecular linkage maps of the tomato and potato genomes. Genetics. 1992 Dec;132(4):1141–1160. doi: 10.1093/genetics/132.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Voytas D. F., Ausubel F. M. A copia-like transposable element family in Arabidopsis thaliana. Nature. 1988 Nov 17;336(6196):242–244. doi: 10.1038/336242a0. [DOI] [PubMed] [Google Scholar]
  14. Wendel J. F. New World tetraploid cottons contain Old World cytoplasm. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4132–4136. doi: 10.1073/pnas.86.11.4132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Whitkus R., Doebley J., Lee M. Comparative genome mapping of Sorghum and maize. Genetics. 1992 Dec;132(4):1119–1130. doi: 10.1093/genetics/132.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES