Abstract
The Drosophila melanogaster genome contains a single region (at 83DE on the polytene chromosome map) for which both heterozygous deficiency and heterozygous duplication are inviable. Seven EMS-induced mutations have been recovered that are viable in combination with a duplication of this region. Two classes of mutations are reported: (1) Mutations that allow survival of flies with either a duplication or a normal third chromosome. These mutations retain Ki, a closely linked marker on the mutagenized chromosome. They fail to complement, and one has been mapped to the vicinity of 83DE. (2) Mutations that allow survival only in heterozygous combination with a duplication and have lost the Ki marker. These mutations represent new deletions of the dose-sensitive information. The possible structural organization of the 83DE region is discussed in light of these two classes of mutations.
Full Text
The Full Text of this article is available as a PDF (806.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barr H. J., Ellison J. R. Ectopic pairing of chromosome regions containing chemically similar DNA. Chromosoma. 1972;39(1):53–61. doi: 10.1007/BF00320590. [DOI] [PubMed] [Google Scholar]
- Denell R. E. The genetic analysis of a uniquely dose-sensitive chromosomal region of Drosophila melanogaster. Genetics. 1976 Oct;84(2):193–210. doi: 10.1093/genetics/84.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellison J. R., Barr H. J. Differences in the quinacrine staining of the chromosomes of a pair of sibling species: Drosophila melanogaster and Drosophila simulans. Chromosoma. 1971;34(4):424–435. doi: 10.1007/BF00326314. [DOI] [PubMed] [Google Scholar]
- Green M. M. Conversion as a possible mechanism of high coincidence values in the centromere region of Drosophila. Mol Gen Genet. 1975 Aug 5;139(1):57–66. doi: 10.1007/BF00267995. [DOI] [PubMed] [Google Scholar]
- Hochman B. Analysis of chromosome 4 in Drosophila melanogaster. II. Ethyl methanesulfonate induced lethals. Genetics. 1971 Feb;67(2):235–252. doi: 10.1093/genetics/67.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaufman T. C. Cytogenetic Analysis of Chromosome 3 in DROSOPHILA MELANOGASTER: Isolation and Characterization of Four New Alleles of the Proboscipedia (pb) Locus. Genetics. 1978 Nov;90(3):579–596. doi: 10.1093/genetics/90.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright T. R., Bewley G. C., Sherald A. F. The genetics of dopa decarboxylase in Drosophila melanogaster. II. Isolation and characterization of dopa-decarboxylase-deficient mutants and their relationship to the alpha-methyl-dopa-hypersensitive mutants. Genetics. 1976 Oct;84(2):287–310. doi: 10.1093/genetics/84.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]