Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1965 May;95(2):466–474. doi: 10.1042/bj0950466

The bacterial degradation of catechol

S Dagley 1, D T Gibson 1
PMCID: PMC1214345  PMID: 14340096

Abstract

1. Two strains of Pseudomonas were grown with phenol and used to prepare cell extracts that metabolized catechol with the transient formation of 2-hydroxymuconic semialdehyde. 2. One of these preparations catalysed the conversion of 1mol. of catechol into 1mol. each of formate and 4-hydroxy-2-oxovalerate. 3. A method for the determination of 4-hydroxy-2-oxovalerate is described, together with some properties of this compound and its 2,4-dinitrophenylhydrazone. 4. Another partially purified cell extract converted 1mol. of 4-hydroxy-2-oxovalerate, formed enzymically from catechol, into 1mol. each of acetaldehyde and pyruvate. This aldolase had a pH optimum of about 8·8, was stimulated by Mg2+ ions and appeared to attack only one enantiomer of synthetic 4-hydroxy-2-oxovalerate.

Full text

PDF
466

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CAVALLINI D. The coupled oxidation of pyruvate with glutathione and cysteine. Biochem J. 1951 Jun;49(1):1–5. doi: 10.1042/bj0490001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DAGLEY S., CHAPMAN P. J., GIBSON D. T., WOOD J. M. DEGRADATION OF THE BENZENE NUCLEUS BY BACTERIA. Nature. 1964 May 23;202:775–778. doi: 10.1038/202775a0. [DOI] [PubMed] [Google Scholar]
  3. DAGLEY S., EVANS W. C., RIBBONS D. W. New pathways in the oxidative metabolism of aromatic compounds by microorganisms. Nature. 1960 Nov 12;188:560–566. doi: 10.1038/188560a0. [DOI] [PubMed] [Google Scholar]
  4. DAGLEY S., FEWSTER E., HAPPOLD F. C. The bacterial oxidation of phenylacetic acid. J Bacteriol. 1952 Mar;63(3):327–336. doi: 10.1128/jb.63.3.327-336.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. EVANS W. C., SMITH B. S. W., LINSTEAD R. P., ELVIDGE J. A. Chemistry of the oxidative metabolism of certain aromatic compounds by micro-organisms. Nature. 1951 Nov 3;168(4279):772–775. doi: 10.1038/168772a0. [DOI] [PubMed] [Google Scholar]
  6. GROSS D. Separation of the lower fatty acids (C1 to C10) by high-voltage paper electrophoresis. Nature. 1958 Jan 24;181(4604):264–265. doi: 10.1038/181264a0. [DOI] [PubMed] [Google Scholar]
  7. HAYAISHI O., KATAGIRI M., ROTHBERG S. Studies on oxygenases; pyrocatechase. J Biol Chem. 1957 Dec;229(2):905–920. [PubMed] [Google Scholar]
  8. HUGHES D. E. A press for disrupting bacteria and other micro-organisms. Br J Exp Pathol. 1951 Apr;32(2):97–109. [PMC free article] [PubMed] [Google Scholar]
  9. HULLIN R. P., NOBLE R. L. The determination of lacic acid in microgram quantities. Biochem J. 1953 Sep;55(2):289–291. doi: 10.1042/bj0550289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KOJIMA Y., ITADA N., HAYAISHI O. Metapyrocatachase: a new catechol-cleaving enzyme. J Biol Chem. 1961 Aug;236:2223–2228. [PubMed] [Google Scholar]
  11. KORNBERG H. L. The metabolism of C2 compounds in micro-organisms. I. The incorporation of [2-14C] acetate by Pseudomonas fluorescens, and by a Corynebacterium, grown on ammonium acetate. Biochem J. 1958 Mar;68(3):535–542. doi: 10.1042/bj0680535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. NISHIZUKA Y., ICHIYAMA A., NAKAMURA S., HAYAISHI O. A new metabolic pathway of catechol. J Biol Chem. 1962 Jan;237:PC268–PC270. [PubMed] [Google Scholar]
  13. RIBBONS D. W., EVANS W. C. Oxidative metabolism of protocatechuic acid by certain soil pseudomonads: a new ring-fission mechanism. Biochem J. 1962 Jun;83:482–492. doi: 10.1042/bj0830482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. RONKAINEN P. [Thin-layer chromatography of keto acids]. J Chromatogr. 1963 Jun;11:228–237. doi: 10.1016/s0021-9673(01)80897-9. [DOI] [PubMed] [Google Scholar]
  15. SHANNON L. M., MARCUS A. Gamma-Methyl-gamma-hydroxy-alpha-ketoglutaric aldolase. I. Purification and properties. J Biol Chem. 1962 Nov;237:3342–3347. [PubMed] [Google Scholar]
  16. SWIM H. E., KRAMPITZ L. O. Acetic acid oxidation by Escherichia coli; evidence for the occurrence of a tricarboxylic acid cycle. J Bacteriol. 1954 Apr;67(4):419–425. doi: 10.1128/jb.67.4.419-425.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES