Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jan 1;313(Pt 1):275–282. doi: 10.1042/bj3130275

The mechanism of human plasma phospholipid transfer protein-induced enlargement of high-density lipoprotein particles: evidence for particle fusion.

S Lusa 1, M Jauhiainen 1, J Metso 1, P Somerharju 1, C Ehnholm 1
PMCID: PMC1216894  PMID: 8546695

Abstract

1. Phospholipid transfer protein (PLTP) mediates conversion of high-density lipoprotein (HDL3) to large particles, with concomitant release of apolipoprotein A-I (apoA-I). To study the mechanisms involved in this conversion, reconstituted HDL (rHDL) particles containing either fluorescent pyrenylacyl cholesterol ester (PyrCE) in their core (PyrCE-rHDL) or pyrenylacyl phosphatidylcholine (PysPC) in their surface lipid layer (PyrPC-rHDL) were prepared. Upon incubation with PLTP they behaved as native HDL3, in that their size increased considerably. 2. When PyrPC-rHDL was incubated with HDL3 in the presence of PLTP, a rapid decline of the pyrene excimer/monomer fluorescence ratio (E/M) occurred, demonstrating that PLTP induced mixing of the surface lipids of PyrPC-rHDL and HDL3. As this mixing was almost complete before any significant increase in HDL particle size was observed, it represents PLTP-mediated phospholipid transfer or exchange that is not directly coupled to the formation of large HDL particles. 3. When core-labelled PyrCE-rHDL was incubated in the presence of PLTP, a much slower, time-dependent decrease of E/M was observed, demonstrating that PLTP also promotes mixing of the core lipids. The rate and extent of mixing of core lipids correlated with the amount of PLTP added and with the increase in particle size. The enlarged particles formed could be visualized as discrete, non-aggregated particles by electron microscopy. Concomitantly with the appearance of enlarged particles, lipid-poor apoA-I molecules were released. These data, together with the fact that PLTP has been shown not to mediate transfer of cholesterol esters, strongly suggest that particle fusion rather than (net) lipid transfer or particle aggregation is responsible for the enlargement of HDL particles observed upon incubation with PLTP.4.ApoA-I rHDL, but not apoA-II rHDL, were converted into large particles, suggesting that the presence of apoA-I is required for PLTP-mediated HDL fusion. A model for PLTP-mediated enlargement of HDL particles is presented.

Full Text

The Full Text of this article is available as a PDF (492.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agnani G., Marcel Y. L. Cholesterol efflux from fibroblasts to discoidal lipoproteins with apolipoprotein A-I (LpA-I) increases with particle size but cholesterol transfer from LpA-I to lipoproteins decreases with size. Biochemistry. 1993 Mar 16;32(10):2643–2649. doi: 10.1021/bi00061a024. [DOI] [PubMed] [Google Scholar]
  2. Barter P. J., Rajaram O. V., Chang L. B., Rye K. A., Gambert P., Lagrost L., Ehnholm C., Fidge N. H. Isolation of a high-density-lipoprotein conversion factor from human plasma. A possible role of apolipoprotein A-IV as its activator. Biochem J. 1988 Aug 15;254(1):179–184. doi: 10.1042/bj2540179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blanche P. J., Gong E. L., Forte T. M., Nichols A. V. Characterization of human high-density lipoproteins by gradient gel electrophoresis. Biochim Biophys Acta. 1981 Sep 24;665(3):408–419. doi: 10.1016/0005-2760(81)90253-8. [DOI] [PubMed] [Google Scholar]
  4. Brown M. S., Goldstein J. L. Lipoprotein receptors in the liver. Control signals for plasma cholesterol traffic. J Clin Invest. 1983 Sep;72(3):743–747. doi: 10.1172/JCI111044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Castro G. R., Fielding C. J. Early incorporation of cell-derived cholesterol into pre-beta-migrating high-density lipoprotein. Biochemistry. 1988 Jan 12;27(1):25–29. doi: 10.1021/bi00401a005. [DOI] [PubMed] [Google Scholar]
  6. Cheung M. C., Albers J. J. Characterization of lipoprotein particles isolated by immunoaffinity chromatography. Particles containing A-I and A-II and particles containing A-I but no A-II. J Biol Chem. 1984 Oct 10;259(19):12201–12209. [PubMed] [Google Scholar]
  7. Clay M. A., Newnham H. H., Forte T. M., Barter P. I. Cholesteryl ester transfer protein and hepatic lipase activity promote shedding of apo A-I from HDL and subsequent formation of discoidal HDL. Biochim Biophys Acta. 1992 Feb 20;1124(1):52–58. doi: 10.1016/0005-2760(92)90125-f. [DOI] [PubMed] [Google Scholar]
  8. D'Alessandro A. M., Hoffmann R. M., Knechtle S. J., Eckhoff D. E., Love R. B., Kalayoglu M., Sollinger H. W., Belzer F. O. Successful extrarenal transplantation from non-heart-beating donors. Transplantation. 1995 Apr 15;59(7):977–982. doi: 10.1097/00007890-199504150-00009. [DOI] [PubMed] [Google Scholar]
  9. Daerr W. H., Greten H. In vitro modulation of the distribution of normal human plasma high density lipoprotein subfractions through the lecithin: cholesterol acyltransferase reaction. Biochim Biophys Acta. 1982 Feb 15;710(2):128–133. doi: 10.1016/0005-2760(82)90142-4. [DOI] [PubMed] [Google Scholar]
  10. Damen J., Regts J., Scherphof G. Transfer of [14C]phosphatidylcholine between liposomes and human plasma high density lipoprotein. Partial purification of a transfer-stimulating plasma factor using a rapid transfer assay. Biochim Biophys Acta. 1982 Sep 14;712(3):444–452. doi: 10.1016/0005-2760(82)90271-5. [DOI] [PubMed] [Google Scholar]
  11. Day J. R., Albers J. J., Lofton-Day C. E., Gilbert T. L., Ching A. F., Grant F. J., O'Hara P. J., Marcovina S. M., Adolphson J. L. Complete cDNA encoding human phospholipid transfer protein from human endothelial cells. J Biol Chem. 1994 Mar 25;269(12):9388–9391. [PubMed] [Google Scholar]
  12. DeLamatre J., Wolfbauer G., Phillips M. C., Rothblat G. H. Role of apolipoproteins in cellular cholesterol efflux. Biochim Biophys Acta. 1986 Feb 28;875(3):419–428. doi: 10.1016/0005-2760(86)90061-5. [DOI] [PubMed] [Google Scholar]
  13. Duverger N., Rader D., Duchateau P., Fruchart J. C., Castro G., Brewer H. B., Jr Biochemical characterization of the three major subclasses of lipoprotein A-I preparatively isolated from human plasma. Biochemistry. 1993 Nov 23;32(46):12372–12379. doi: 10.1021/bi00097a014. [DOI] [PubMed] [Google Scholar]
  14. Fruchart J. C., Ailhaud G. Apolipoprotein A-containing lipoprotein particles: physiological role, quantification, and clinical significance. Clin Chem. 1992 Jun;38(6):793–797. [PubMed] [Google Scholar]
  15. Gordon D. J., Rifkind B. M. High-density lipoprotein--the clinical implications of recent studies. N Engl J Med. 1989 Nov 9;321(19):1311–1316. doi: 10.1056/NEJM198911093211907. [DOI] [PubMed] [Google Scholar]
  16. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hara H., Yokoyama S. Interaction of free apolipoproteins with macrophages. Formation of high density lipoprotein-like lipoproteins and reduction of cellular cholesterol. J Biol Chem. 1991 Feb 15;266(5):3080–3086. [PubMed] [Google Scholar]
  18. Hara H., Yokoyama S. Role of apolipoproteins in cholesterol efflux from macrophages to lipid microemulsion: proposal of a putative model for the pre-beta high-density lipoprotein pathway. Biochemistry. 1992 Feb 25;31(7):2040–2046. doi: 10.1021/bi00122a021. [DOI] [PubMed] [Google Scholar]
  19. Hopkins G. J., Chang L. B., Barter P. J. Role of lipid transfers in the formation of a subpopulation of small high density lipoproteins. J Lipid Res. 1985 Feb;26(2):218–229. [PubMed] [Google Scholar]
  20. Jauhiainen M., Metso J., Pahlman R., Blomqvist S., van Tol A., Ehnholm C. Human plasma phospholipid transfer protein causes high density lipoprotein conversion. J Biol Chem. 1993 Feb 25;268(6):4032–4036. [PubMed] [Google Scholar]
  21. Jonas A., Bottum K., Kézdy K. E. Transformations of reconstituted high-density lipoprotein subclasses as a function of temperature or LDL concentration. Biochim Biophys Acta. 1991 Aug 20;1085(1):71–76. doi: 10.1016/0005-2760(91)90233-8. [DOI] [PubMed] [Google Scholar]
  22. Krebs K. E., Ibdah J. A., Phillips M. C. A comparison of the surface activities of human apolipoproteins A-I and A-II at the air/water interface. Biochim Biophys Acta. 1988 Apr 15;959(3):229–237. doi: 10.1016/0005-2760(88)90195-6. [DOI] [PubMed] [Google Scholar]
  23. Kunitake S. T., La Sala K. J., Kane J. P. Apolipoprotein A-I-containing lipoproteins with pre-beta electrophoretic mobility. J Lipid Res. 1985 May;26(5):549–555. [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Lagocki P. A., Scanu A. M. In vitro modulation of the apolipoprotein composition of high density lipoprotein. Displacement of apolipoprotein A-I from high density lipoprotein by apolipoprotein A-II. J Biol Chem. 1980 Apr 25;255(8):3701–3706. [PubMed] [Google Scholar]
  27. Lagrost L., Athias A., Gambert P., Lallemant C. Comparative study of phospholipid transfer activities mediated by cholesteryl ester transfer protein and phospholipid transfer protein. J Lipid Res. 1994 May;35(5):825–835. [PubMed] [Google Scholar]
  28. Massey J. B., Gotto A. M., Jr, Pownall H. J. Kinetics and mechanism of the spontaneous transfer of fluorescent phosphatidylcholines between apolipoprotein-phospholipid recombinants. Biochemistry. 1982 Jul 20;21(15):3630–3636. doi: 10.1021/bi00258a016. [DOI] [PubMed] [Google Scholar]
  29. Miller G. J., Miller N. E. Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet. 1975 Jan 4;1(7897):16–19. doi: 10.1016/s0140-6736(75)92376-4. [DOI] [PubMed] [Google Scholar]
  30. Miller N. E., Hammett F., Saltissi S., Rao S., van Zeller H., Coltart J., Lewis B. Relation of angiographically defined coronary artery disease to plasma lipoprotein subfractions and apolipoproteins. Br Med J (Clin Res Ed) 1981 May 30;282(6278):1741–1744. doi: 10.1136/bmj.282.6278.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Milner T. G., Ko K. W., Ohnishi T., Yokoyama S. Enhancement of the human plasma lipid transfer protein reaction by apolipoproteins. Biochim Biophys Acta. 1991 Feb 26;1082(1):71–78. doi: 10.1016/0005-2760(91)90301-w. [DOI] [PubMed] [Google Scholar]
  32. Ohnishi T., Tan C., Yokoyama S. Selective transfer of cholesteryl ester over triglyceride by human plasma lipid transfer protein between apolipoprotein-activated lipid microemulsions. Biochemistry. 1994 Apr 19;33(15):4533–4542. doi: 10.1021/bi00181a014. [DOI] [PubMed] [Google Scholar]
  33. Ohnishi T., Yokoyama S. Activation of human plasma lipid transfer protein by apolipoproteins. Biochemistry. 1993 May 18;32(19):5029–5035. doi: 10.1021/bi00070a009. [DOI] [PubMed] [Google Scholar]
  34. Parra H. J., Arveiler D., Evans A. E., Cambou J. P., Amouyel P., Bingham A., McMaster D., Schaffer P., Douste-Blazy P., Luc G. A case-control study of lipoprotein particles in two populations at contrasting risk for coronary heart disease. The ECTIM Study. Arterioscler Thromb. 1992 Jun;12(6):701–707. doi: 10.1161/01.atv.12.6.701. [DOI] [PubMed] [Google Scholar]
  35. Patsch J. R., Gotto A. M., Jr, Olivercrona T., Eisenberg S. Formation of high density lipoprotein2-like particles during lipolysis of very low density lipoproteins in vitro. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4519–4523. doi: 10.1073/pnas.75.9.4519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Patsch W., Schonfeld G., Gotto A. M., Jr, Patsch J. R. Characterization of human high density lipoproteins by zonal ultracentrifugation. J Biol Chem. 1980 Apr 10;255(7):3178–3185. [PubMed] [Google Scholar]
  37. Pittman R. C., Glass C. K., Atkinson D., Small D. M. Synthetic high density lipoprotein particles. Application to studies of the apoprotein specificity for selective uptake of cholesterol esters. J Biol Chem. 1987 Feb 25;262(6):2435–2442. [PubMed] [Google Scholar]
  38. Pussinen P., Jauhianinen M., Metso J., Tyynelä J., Ehnholm C. Pig plasma phospholipid transfer protein facilitates HDL interconversion. J Lipid Res. 1995 May;36(5):975–985. [PubMed] [Google Scholar]
  39. Riepponen P., Marniemi J., Rautaoja T. Immunoturbidimetric determination of apolipoproteins A-1 and B in serum. Scand J Clin Lab Invest. 1987 Nov;47(7):739–744. [PubMed] [Google Scholar]
  40. Rosseneu M., Soetewey F., Middelhoff G., Peeters H., Brown W. V. Studies of the lipid binding characteristics of the apolipoproteins from human high density lipoprotein. II. Calorimetry of the binding of apo AI and apo AII with phospholipids. Biochim Biophys Acta. 1976 Jul 20;441(1):68–80. doi: 10.1016/0005-2760(76)90282-4. [DOI] [PubMed] [Google Scholar]
  41. Ryan R. O., Yokoyama S., Liu H., Czarnecka H., Oikawa K., Kay C. M. Human apolipoprotein A-I liberated from high-density lipoprotein without denaturation. Biochemistry. 1992 May 12;31(18):4509–4514. doi: 10.1021/bi00133a018. [DOI] [PubMed] [Google Scholar]
  42. Rye K. A., Barter P. J. Changes in the size and density of human high-density lipoproteins promoted by a plasma-conversion factor. Biochim Biophys Acta. 1986 Feb 28;875(3):429–438. doi: 10.1016/0005-2760(86)90062-7. [DOI] [PubMed] [Google Scholar]
  43. Rye K. A., Barter P. J. The influence of apolipoproteins on the structure and function of spheroidal, reconstituted high density lipoproteins. J Biol Chem. 1994 Apr 8;269(14):10298–10303. [PubMed] [Google Scholar]
  44. Shirai K., Barnhart R. L., Jackson R. L. Hydrolysis of human plasma high density lipoprotein 2- phospholipids and triglycerides by hepatic lipase. Biochem Biophys Res Commun. 1981 May 29;100(2):591–599. doi: 10.1016/s0006-291x(81)80217-3. [DOI] [PubMed] [Google Scholar]
  45. Somerharju P. J., Virtanen J. A., Eklund K. K., Vainio P., Kinnunen P. K. 1-Palmitoyl-2-pyrenedecanoyl glycerophospholipids as membrane probes: evidence for regular distribution in liquid-crystalline phosphatidylcholine bilayers. Biochemistry. 1985 May 21;24(11):2773–2781. doi: 10.1021/bi00332a027. [DOI] [PubMed] [Google Scholar]
  46. Speijer H., Groener J. E., van Ramshorst E., van Tol A. Different locations of cholesteryl ester transfer protein and phospholipid transfer protein activities in plasma. Atherosclerosis. 1991 Oct;90(2-3):159–168. doi: 10.1016/0021-9150(91)90110-o. [DOI] [PubMed] [Google Scholar]
  47. Tall A. R., Deckelbaum R. J., Small D. M., Shipley G. G. Thermal behavior of human plasma high density lipoprotein. Biochim Biophys Acta. 1977 Apr 26;487(1):145–133. doi: 10.1016/0005-2760(77)90051-0. [DOI] [PubMed] [Google Scholar]
  48. Tollefson J. H., Ravnik S., Albers J. J. Isolation and characterization of a phospholipid transfer protein (LTP-II) from human plasma. J Lipid Res. 1988 Dec;29(12):1593–1602. [PubMed] [Google Scholar]
  49. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tu A. Y., Nishida H. I., Nishida T. High density lipoprotein conversion mediated by human plasma phospholipid transfer protein. J Biol Chem. 1993 Nov 5;268(31):23098–23105. [PubMed] [Google Scholar]
  51. Wilson P. W., Abbott R. D., Castelli W. P. High density lipoprotein cholesterol and mortality. The Framingham Heart Study. Arteriosclerosis. 1988 Nov-Dec;8(6):737–741. doi: 10.1161/01.atv.8.6.737. [DOI] [PubMed] [Google Scholar]
  52. von Eckardstein A., Castro G., Wybranska I., Theret N., Duchateau P., Duverger N., Fruchart J. C., Ailhaud G., Assmann G. Interaction of reconstituted high density lipoprotein discs containing human apolipoprotein A-I (ApoA-I) variants with murine adipocytes and macrophages. Evidence for reduced cholesterol efflux promotion by apoA-I(Pro165-->Arg). J Biol Chem. 1993 Feb 5;268(4):2616–2622. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES