Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Feb 1;313(Pt 3):809–814. doi: 10.1042/bj3130809

Isoenzyme-specific regulation of genes involved in energy metabolism by hypoxia: similarities with the regulation of erythropoietin.

B L Ebert 1, J M Gleadle 1, J F O'Rourke 1, S M Bartlett 1, J Poulton 1, P J Ratcliffe 1
PMCID: PMC1216982  PMID: 8611159

Abstract

Recent studies have indicated that regulatory mechanisms underlying the oxygen-dependent expression of the haematopoietic growth factor erythropoietin are widely operative in non-erythropoietin-producing cells and are involved in the regulation of other genes. An important characteristic of this system is that the inducible response to hypoxia is mimicked by exposure to particular transition metals such as cobaltous ions, and by iron chelation. We have investigated the extent of operation of this system in the regulation of a range of genes concerned with energy metabolism. The effects of hypoxia (1% oxygen), cobaltous ions and desferrioxamine on gene expression in tissue-culture cells was studied using RNase protection assays. Hypoxia induced the expression of glucose transporters in an isoform-specific manner; GLUT-1 and GLUT-3 were induced by hypoxia, whereas expression of GLUT-2 was decreased. Isoenzyme-specific regulation by hypoxia was also observed for genes encoding phosphofructokinase, aldolase and lactate dehydrogenase. For all of these genes, responses to cobaltous ions and desferrioxamine correlated in both direction and magnitude with the response to hypoxia. In contrast, a reduction in mitochondrial transcripts was observed in hypoxia, but these changes were not mimicked by either cobaltous ions or desferrioxamine. These findings indicate that similarities with erythropoietin regulation extend to the oxygen-dependent regulation of genes encoding glucose transporters and glycolytic enzymes but not to the regulation of mitochondrial transcripts, and they show that in glucose metabolism regulation by this system is isoenzyme- or isoform-specific.

Full Text

The Full Text of this article is available as a PDF (298.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
  2. Beck I., Weinmann R., Caro J. Characterization of hypoxia-responsive enhancer in the human erythropoietin gene shows presence of hypoxia-inducible 120-Kd nuclear DNA-binding protein in erythropoietin-producing and nonproducing cells. Blood. 1993 Aug 1;82(3):704–711. [PubMed] [Google Scholar]
  3. Evans M. J., Scarpulla R. C. NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev. 1990 Jun;4(6):1023–1034. doi: 10.1101/gad.4.6.1023. [DOI] [PubMed] [Google Scholar]
  4. Field M. L., Clark J. F., Henderson C., Seymour A. M., Radda G. K. Alterations in the myocardial creatine kinase system during chronic anaemic hypoxia. Cardiovasc Res. 1994 Jan;28(1):86–91. doi: 10.1093/cvr/28.1.86. [DOI] [PubMed] [Google Scholar]
  5. Firth J. D., Ebert B. L., Pugh C. W., Ratcliffe P. J. Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 3' enhancer. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6496–6500. doi: 10.1073/pnas.91.14.6496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Firth J. D., Ebert B. L., Ratcliffe P. J. Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements. J Biol Chem. 1995 Sep 8;270(36):21021–21027. doi: 10.1074/jbc.270.36.21021. [DOI] [PubMed] [Google Scholar]
  7. Gleadle J. M., Ebert B. L., Firth J. D., Ratcliffe P. J. Regulation of angiogenic growth factor expression by hypoxia, transition metals, and chelating agents. Am J Physiol. 1995 Jun;268(6 Pt 1):C1362–C1368. doi: 10.1152/ajpcell.1995.268.6.C1362. [DOI] [PubMed] [Google Scholar]
  8. Goldberg M. A., Dunning S. P., Bunn H. F. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science. 1988 Dec 9;242(4884):1412–1415. doi: 10.1126/science.2849206. [DOI] [PubMed] [Google Scholar]
  9. Goldberg M. A., Schneider T. J. Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J Biol Chem. 1994 Feb 11;269(6):4355–4359. [PubMed] [Google Scholar]
  10. Görlach A., Holtermann G., Jelkmann W., Hancock J. T., Jones S. A., Jones O. T., Acker H. Photometric characteristics of haem proteins in erythropoietin-producing hepatoma cells (HepG2). Biochem J. 1993 Mar 15;290(Pt 3):771–776. doi: 10.1042/bj2900771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hammond G. L., Nadal-Ginard B., Talner N. S., Markert C. L. Myocardial LDH isozyme distribution in the ischemic and hypoxic heart. Circulation. 1976 Apr;53(4):637–643. doi: 10.1161/01.cir.53.4.637. [DOI] [PubMed] [Google Scholar]
  12. Ibsen K. H., Fishman W. H. Developmental gene expression in cancer. Biochim Biophys Acta. 1979 Aug 10;560(2):243–280. doi: 10.1016/0304-419x(79)90021-0. [DOI] [PubMed] [Google Scholar]
  13. Kadowaki T., Kitagawa Y. Hypoxic depression of mitochondrial mRNA levels in HeLa cell. Exp Cell Res. 1991 Jan;192(1):243–247. doi: 10.1016/0014-4827(91)90182-t. [DOI] [PubMed] [Google Scholar]
  14. Kietzmann T., Schmidt H., Probst I., Jungermann K. Modulation of the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene by oxygen in rat hepatocyte cultures. Evidence for a heme protein as oxygen sensor. FEBS Lett. 1992 Oct 26;311(3):251–255. doi: 10.1016/0014-5793(92)81113-z. [DOI] [PubMed] [Google Scholar]
  15. Loike J. D., Cao L., Brett J., Ogawa S., Silverstein S. C., Stern D. Hypoxia induces glucose transporter expression in endothelial cells. Am J Physiol. 1992 Aug;263(2 Pt 1):C326–C333. doi: 10.1152/ajpcell.1992.263.2.C326. [DOI] [PubMed] [Google Scholar]
  16. Marti H. H., Jung H. H., Pfeilschifter J., Bauer C. Hypoxia and cobalt stimulate lactate dehydrogenase (LDH) activity in vascular smooth muscle cells. Pflugers Arch. 1994 Dec;429(2):216–222. doi: 10.1007/BF00374315. [DOI] [PubMed] [Google Scholar]
  17. Maxwell P. H., Pugh C. W., Ratcliffe P. J. Inducible operation of the erythropoietin 3' enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2423–2427. doi: 10.1073/pnas.90.6.2423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mueckler M. Facilitative glucose transporters. Eur J Biochem. 1994 Feb 1;219(3):713–725. doi: 10.1111/j.1432-1033.1994.tb18550.x. [DOI] [PubMed] [Google Scholar]
  19. Murphy B. J., Robin E. D., Tapper D. P., Wong R. J., Clayton D. A. Hypoxic coordinate regulation of mitochondrial enzymes in mammalian cells. Science. 1984 Feb 17;223(4637):707–709. doi: 10.1126/science.6320368. [DOI] [PubMed] [Google Scholar]
  20. Necas E., Thorling E. B. Unresponsiveness of erythropoietin-producing cells to cyanide. Am J Physiol. 1972 May;222(5):1187–1190. doi: 10.1152/ajplegacy.1972.222.5.1187. [DOI] [PubMed] [Google Scholar]
  21. Poulton J., Sewry C., Potter C. G., Bougeron T., Chretien D., Wijburg F. A., Morten K. J., Brown G. Variation in mitochondrial DNA levels in muscle from normal controls. Is depletion of mtDNA in patients with mitochondrial myopathy a distinct clinical syndrome. J Inherit Metab Dis. 1995;18(1):4–20. doi: 10.1007/BF00711367. [DOI] [PubMed] [Google Scholar]
  22. Ptashne K. A., Theodore J., Robin E. D. Increased phosphofructokinase content during chronic hypoxia in cultured skeletal muscle (L8) cells. Biochim Biophys Acta. 1983 Sep 22;763(2):169–174. doi: 10.1016/0167-4889(83)90040-x. [DOI] [PubMed] [Google Scholar]
  23. Semenza G. L., Roth P. H., Fang H. M., Wang G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994 Sep 23;269(38):23757–23763. [PubMed] [Google Scholar]
  24. Staal G. E., Kalff A., Heesbeen E. C., van Veelen C. W., Rijksen G. Subunit composition, regulatory properties, and phosphorylation of phosphofructokinase from human gliomas. Cancer Res. 1987 Oct 1;47(19):5047–5051. [PubMed] [Google Scholar]
  25. Virbasius C. A., Virbasius J. V., Scarpulla R. C. NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes Dev. 1993 Dec;7(12A):2431–2445. doi: 10.1101/gad.7.12a.2431. [DOI] [PubMed] [Google Scholar]
  26. Wang G. L., Jiang B. H., Rue E. A., Semenza G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5510–5514. doi: 10.1073/pnas.92.12.5510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wang G. L., Semenza G. L. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood. 1993 Dec 15;82(12):3610–3615. [PubMed] [Google Scholar]
  28. Wang G. L., Semenza G. L. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4304–4308. doi: 10.1073/pnas.90.9.4304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Webster K. A., Gunning P., Hardeman E., Wallace D. C., Kedes L. Coordinate reciprocal trends in glycolytic and mitochondrial transcript accumulations during the in vitro differentiation of human myoblasts. J Cell Physiol. 1990 Mar;142(3):566–573. doi: 10.1002/jcp.1041420316. [DOI] [PubMed] [Google Scholar]
  30. Webster K. A. Regulation of glycolytic enzyme RNA transcriptional rates by oxygen availability in skeletal muscle cells. Mol Cell Biochem. 1987 Sep;77(1):19–28. doi: 10.1007/BF00230147. [DOI] [PubMed] [Google Scholar]
  31. Wölfle D., Jungermann K. Long-term effects of physiological oxygen concentrations on glycolysis and gluconeogenesis in hepatocyte cultures. Eur J Biochem. 1985 Sep 2;151(2):299–303. doi: 10.1111/j.1432-1033.1985.tb09100.x. [DOI] [PubMed] [Google Scholar]
  32. Yamamoto T., Seino Y., Fukumoto H., Koh G., Yano H., Inagaki N., Yamada Y., Inoue K., Manabe T., Imura H. Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun. 1990 Jul 16;170(1):223–230. doi: 10.1016/0006-291x(90)91263-r. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES