Abstract
In the present study we have cloned and characterized a novel rat peroxisomal multifunctional enzyme (MFE) named perMFE-II. The purified 2-enoyl-CoA hydratase 2 with an M(r) of 31500 from rat liver [Malila, Siivari, Mäkelä, Jalonen, Latipää, Kunau and Hiltunen (1993) J. Biol. Chem. 268, 21578-21585] was subjected to tryptic fragmentation and the resulting peptides were isolated and sequenced. Surprisingly, the full-length cDNA, amplified by PCR, had an open reading frame of 2205 bp encoding a polypeptide with a predicted M(r) of 79,331 and contained a potential peroxisomal targeting signal in the C-terminus (Ala-Lys-Leu). The sequenced peptide fragments of hydratase 2 gave a full match in the middle portion of the cDNA-derived amino acid sequence. The predicted amino acid sequence showed a high degree of similarity with pig 17 beta-hydroxysteroid dehydrogenase type IV and MFE of yeast peroxisomal beta-oxidation. Recombinant perMFE-II (produced in Pichia pastoris) had 2-enoyl-CoA hydratase 2 and D-specific 3-hydroxyacyl-CoA dehydrogenase activities and was catalytically active with several straight-chain trans-2-enoyl-CoA, 2-methyltetradecenoyl-CoA and pristenoyl-CoA esters. The results showed that in addition to an earlier described multifunctional isomerase-hydratase-dehydrogenase enzyme from rat liver peroxisomes (perMFE-I), another MFE exists in rat liver peroxisomes. They both catalyse sequential hydratase and dehydrogenase reactions of beta-oxidation but through reciprocal stereochemical courses.
Full Text
The Full Text of this article is available as a PDF (911.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamski J., Husen B., Marks F., Jungblut P. W. Purification and properties of oestradiol 17 beta-dehydrogenase extracted from cytoplasmic vesicles of porcine endometrial cells. Biochem J. 1992 Dec 1;288(Pt 2):375–381. doi: 10.1042/bj2880375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker M. E. A common ancestor for Candida tropicalis and dehydrogenases that synthesize antibiotics and steroids. FASEB J. 1990 Sep;4(12):3028–3032. doi: 10.1096/fasebj.4.12.2394320. [DOI] [PubMed] [Google Scholar]
- Baker M. E. Protochlorophyllide reductase is homologous to human carbonyl reductase and pig 20 beta-hydroxysteroid dehydrogenase. Biochem J. 1994 Jun 1;300(Pt 2):605–607. doi: 10.1042/bj3000605b. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen L. S., Jin S. J., Tserng K. Y. Purification and mechanism of delta 3,delta 5-t-2,t-4-dienoyl-CoA isomerase from rat liver. Biochemistry. 1994 Aug 30;33(34):10527–10534. doi: 10.1021/bi00200a039. [DOI] [PubMed] [Google Scholar]
- Christiansen R. Z., Christiansen E. N., Bremer J. The stimulation of erucate metabolism in isolated rat hepatocytes by rapeseed oil and hydrogenated marine oil-containing diets. Biochim Biophys Acta. 1979 Jun 21;573(3):417–429. doi: 10.1016/0005-2760(79)90216-9. [DOI] [PubMed] [Google Scholar]
- Cooper T. G., Beevers H. Beta oxidation in glyoxysomes from castor bean endosperm. J Biol Chem. 1969 Jul 10;244(13):3514–3520. [PubMed] [Google Scholar]
- DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Filppula S. A., Sormunen R. T., Hartig A., Kunau W. H., Hiltunen J. K. Changing stereochemistry for a metabolic pathway in vivo. Experiments with the peroxisomal beta-oxidation in yeast. J Biol Chem. 1995 Nov 17;270(46):27453–27457. doi: 10.1074/jbc.270.46.27453. [DOI] [PubMed] [Google Scholar]
- Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
- Hellman U., Wernstedt C., Góez J., Heldin C. H. Improvement of an "In-Gel" digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal Biochem. 1995 Jan 1;224(1):451–455. doi: 10.1006/abio.1995.1070. [DOI] [PubMed] [Google Scholar]
- Hiltunen J. K., Filppula S. A., Häyrinen H. M., Koivuranta K. T., Hakkola E. H. Peroxisomal beta-oxidation of polyunsaturated fatty acids. Biochimie. 1993;75(3-4):175–182. doi: 10.1016/0300-9084(93)90075-4. [DOI] [PubMed] [Google Scholar]
- Hiltunen J. K., Kunau W. H. Epimerization of 3-hydroxyacyl-CoA esters as an auxiliary reaction in the beta-oxidation of unsaturated fatty acids. Prog Clin Biol Res. 1990;321:265–272. [PubMed] [Google Scholar]
- Hiltunen J. K., Kärki T., Hassinen I. E., Osmundsen H. beta-Oxidation of polyunsaturated fatty acids by rat liver peroxisomes. A role for 2,4-dienoyl-coenzyme A reductase in peroxisomal beta-oxidation. J Biol Chem. 1986 Dec 15;261(35):16484–16493. [PubMed] [Google Scholar]
- Hiltunen J. K., Palosaari P. M., Kunau W. H. Epimerization of 3-hydroxyacyl-CoA esters in rat liver. Involvement of two 2-enoyl-CoA hydratases. J Biol Chem. 1989 Aug 15;264(23):13536–13540. [PubMed] [Google Scholar]
- Hiltunen J. K., Wenzel B., Beyer A., Erdmann R., Fosså A., Kunau W. H. Peroxisomal multifunctional beta-oxidation protein of Saccharomyces cerevisiae. Molecular analysis of the fox2 gene and gene product. J Biol Chem. 1992 Apr 5;267(10):6646–6653. [PubMed] [Google Scholar]
- Huang X. On global sequence alignment. Comput Appl Biosci. 1994 Jun;10(3):227–235. doi: 10.1093/bioinformatics/10.3.227. [DOI] [PubMed] [Google Scholar]
- Kunau W. H., Bühne S., de la Garza M., Kionka C., Mateblowski M., Schultz-Borchard U., Thieringer R. Comparative enzymology of beta-oxidation. Biochem Soc Trans. 1988 Jun;16(3):418–420. doi: 10.1042/bst0160418. [DOI] [PubMed] [Google Scholar]
- Lazarow P. B., De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leenders F., Adamski J., Husen B., Thole H. H., Jungblut P. W. Molecular cloning and amino acid sequence of the porcine 17 beta-estradiol dehydrogenase. Eur J Biochem. 1994 May 15;222(1):221–227. doi: 10.1111/j.1432-1033.1994.tb18860.x. [DOI] [PubMed] [Google Scholar]
- Leenders F., Husen B., Thole H. H., Adamski J. The sequence of porcine 80 kDa 17 beta-estradiol dehydrogenase reveals similarities to the short chain alcohol dehydrogenase family, to actin binding motifs and to sterol carrier protein 2. Mol Cell Endocrinol. 1994 Sep;104(2):127–131. doi: 10.1016/0303-7207(94)90114-7. [DOI] [PubMed] [Google Scholar]
- Leenders F., Tesdorpf J. G., Markus M., Engel T., Seedorf U., Adamski J. Porcine 80-kDa protein reveals intrinsic 17 beta-hydroxysteroid dehydrogenase, fatty acyl-CoA-hydratase/dehydrogenase, and sterol transfer activities. J Biol Chem. 1996 Mar 8;271(10):5438–5442. doi: 10.1074/jbc.271.10.5438. [DOI] [PubMed] [Google Scholar]
- Li J. X., Smeland T. E., Schulz H. D-3-hydroxyacyl coenzyme A dehydratase from rat liver peroxisomes. Purification and characterization of a novel enzyme necessary for the epimerization of 3-hydroxyacyl-CoA thioesters. J Biol Chem. 1990 Aug 15;265(23):13629–13634. [PubMed] [Google Scholar]
- Luthria D. L., Baykousheva S. P., Sprecher H. Double bond removal from odd-numbered carbons during peroxisomal beta-oxidation of arachidonic acid requires both 2,4-dienoyl-CoA reductase and delta 3,5,delta 2,4-dienoyl-CoA isomerase. J Biol Chem. 1995 Jun 9;270(23):13771–13776. doi: 10.1074/jbc.270.23.13771. [DOI] [PubMed] [Google Scholar]
- Malila L. H., Siivari K. M., Mäkelä M. J., Jalonen J. E., Latipä P. M., Kunau W. H., Hiltunen J. K. Enzymes converting D-3-hydroxyacyl-CoA to trans-2-enoyl-CoA. Microsomal and peroxisomal isoenzymes in rat liver. J Biol Chem. 1993 Oct 15;268(29):21578–21585. [PubMed] [Google Scholar]
- Mannaerts G. P., Van Veldhoven P. P. Metabolic pathways in mammalian peroxisomes. Biochimie. 1993;75(3-4):147–158. doi: 10.1016/0300-9084(93)90072-z. [DOI] [PubMed] [Google Scholar]
- Novikov D. K., Vanhove G. F., Carchon H., Asselberghs S., Eyssen H. J., Van Veldhoven P. P., Mannaerts G. P. Peroxisomal beta-oxidation. Purification of four novel 3-hydroxyacyl-CoA dehydrogenases from rat liver peroxisomes. J Biol Chem. 1994 Oct 28;269(43):27125–27135. [PubMed] [Google Scholar]
- Nuttley W. M., Aitchison J. D., Rachubinski R. A. cDNA cloning and primary structure determination of the peroxisomal trifunctional enzyme hydratase-dehydrogenase-epimerase from the yeast Candida tropicalis pK233. Gene. 1988 Sep 30;69(2):171–180. doi: 10.1016/0378-1119(88)90428-3. [DOI] [PubMed] [Google Scholar]
- Osumi T., Hashimoto T. Peroxisomal beta oxidation system of rat liver. Copurification of enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase. Biochem Biophys Res Commun. 1979 Jul 27;89(2):580–584. doi: 10.1016/0006-291x(79)90669-7. [DOI] [PubMed] [Google Scholar]
- Palosaari P. M., Hiltunen J. K. Peroxisomal bifunctional protein from rat liver is a trifunctional enzyme possessing 2-enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and delta 3, delta 2-enoyl-CoA isomerase activities. J Biol Chem. 1990 Feb 15;265(5):2446–2449. [PubMed] [Google Scholar]
- Persson B., Krook M., Jörnvall H. Characteristics of short-chain alcohol dehydrogenases and related enzymes. Eur J Biochem. 1991 Sep 1;200(2):537–543. doi: 10.1111/j.1432-1033.1991.tb16215.x. [DOI] [PubMed] [Google Scholar]
- Puranen T. J., Poutanen M. H., Peltoketo H. E., Vihko P. T., Vihko R. K. Site-directed mutagenesis of the putative active site of human 17 beta-hydroxysteroid dehydrogenase type 1. Biochem J. 1994 Nov 15;304(Pt 1):289–293. doi: 10.1042/bj3040289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasmussen J. T., Börchers T., Knudsen J. Comparison of the binding affinities of acyl-CoA-binding protein and fatty-acid-binding protein for long-chain acyl-CoA esters. Biochem J. 1990 Feb 1;265(3):849–855. doi: 10.1042/bj2650849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmitz W., Fingerhut R., Conzelmann E. Purification and properties of an alpha-methylacyl-CoA racemase from rat liver. Eur J Biochem. 1994 Jun 1;222(2):313–323. doi: 10.1111/j.1432-1033.1994.tb18870.x. [DOI] [PubMed] [Google Scholar]
- Seedorf U., Assmann G. Cloning, expression, and nucleotide sequence of rat liver sterol carrier protein 2 cDNAs. J Biol Chem. 1991 Jan 5;266(1):630–636. [PubMed] [Google Scholar]
- Seedorf U., Brysch P., Engel T., Schrage K., Assmann G. Sterol carrier protein X is peroxisomal 3-oxoacyl coenzyme A thiolase with intrinsic sterol carrier and lipid transfer activity. J Biol Chem. 1994 Aug 19;269(33):21277–21283. [PubMed] [Google Scholar]
- Singh H., Beckman K., Poulos A. Peroxisomal beta-oxidation of branched chain fatty acids in rat liver. Evidence that carnitine palmitoyltransferase I prevents transport of branched chain fatty acids into mitochondria. J Biol Chem. 1994 Apr 1;269(13):9514–9520. [PubMed] [Google Scholar]
- Smeland T. E., Li J. X., Chu C. H., Cuebas D., Schulz H. The 3-hydroxyacyl-CoA epimerase activity of rat liver peroxisomes is due to the combined actions of two enoyl-CoA hydratases: a revision of the epimerase-dependent pathway of unsaturated fatty acid oxidation. Biochem Biophys Res Commun. 1989 May 15;160(3):988–992. doi: 10.1016/s0006-291x(89)80098-1. [DOI] [PubMed] [Google Scholar]
- Smeland T. E., Nada M., Cuebas D., Schulz H. NADPH-dependent beta-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6673–6677. doi: 10.1073/pnas.89.15.6673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanaka A., Osumi M., Fukui S. Peroxisomes of alkane-grown yeast: fundamental and practical aspects. Ann N Y Acad Sci. 1982;386:183–199. doi: 10.1111/j.1749-6632.1982.tb21416.x. [DOI] [PubMed] [Google Scholar]
- Wanders R. J., van Roermund C. W., Schutgens R. B., Barth P. G., Heymans H. S., van den Bosch H., Tager J. M. The inborn errors of peroxisomal beta-oxidation: a review. J Inherit Metab Dis. 1990;13(1):4–36. doi: 10.1007/BF01799330. [DOI] [PubMed] [Google Scholar]
- Wierenga R. K., Drenth J., Schulz G. E. Comparison of the three-dimensional protein and nucleotide structure of the FAD-binding domain of p-hydroxybenzoate hydroxylase with the FAD- as well as NADPH-binding domains of glutathione reductase. J Mol Biol. 1983 Jul 5;167(3):725–739. doi: 10.1016/s0022-2836(83)80106-5. [DOI] [PubMed] [Google Scholar]
- de Hoop M. J., Ab G. Import of proteins into peroxisomes and other microbodies. Biochem J. 1992 Sep 15;286(Pt 3):657–669. doi: 10.1042/bj2860657. [DOI] [PMC free article] [PubMed] [Google Scholar]