Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Apr 1;323(Pt 1):119–122. doi: 10.1042/bj3230119

The flux control coefficient of carnitine palmitoyltransferase I on palmitate beta-oxidation in rat hepatocyte cultures.

T D Spurway 1, H A Sherratt 1, C I Pogson 1, L Agius 1
PMCID: PMC1218282  PMID: 9173869

Abstract

Two important factors that determine the flux of hepatic beta-oxidation of long-chain fatty acids are the availability of fatty acid and the activity of carnitine palmitoyltransferase I (CPT I). Using Metabolic Control Analysis, the flux control coefficient of CPT I in rat hepatocyte monolayers was determined by titration with 2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate (Etomoxir), which is converted to Etomoxir-CoA, an irreversible inhibitor of CPT I. We measured CPT I activity and flux through beta-oxidation at 0.2 mM and 1.0 mM palmitate to simulate substrate concentrations in fed and fasted states. Rates of beta-oxidation were 4.5-fold higher at 1. 0 mM palmitate compared with 0.2 mM palmitate. Flux control coefficients of CPT I, estimated by two independent methods, were similar: 0.67 and 0.79 for 0.2 mM palmitate, and 0.68 and 0.77 for 1 mM palmitate. It is concluded that the regulatory potential of CPT I is similar at low and high physiological concentrations of palmitate.

Full Text

The Full Text of this article is available as a PDF (308.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agius L., Chowdhury M. H., Alberti K. G. Regulation of ketogenesis, gluconeogenesis and the mitochondrial redox state by dexamethasone in hepatocyte monolayer cultures. Biochem J. 1986 Nov 1;239(3):593–601. doi: 10.1042/bj2390593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agius L., Peak M., Alberti K. G. Regulation of glycogen synthesis from glucose and gluconeogenic precursors by insulin in periportal and perivenous rat hepatocytes. Biochem J. 1990 Feb 15;266(1):91–102. doi: 10.1042/bj2660091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Agius L., Peak M., Sherratt S. A. Differences between human, rat and guinea pig hepatocyte cultures. A comparative study of their rates of beta-oxidation and esterification of palmitate and their sensitivity to R-etomoxir. Biochem Pharmacol. 1991 Oct 9;42(9):1711–1715. doi: 10.1016/0006-2952(91)90506-z. [DOI] [PubMed] [Google Scholar]
  4. Aoyama T., Ueno I., Kamijo T., Hashimoto T. Rat very-long-chain acyl-CoA dehydrogenase, a novel mitochondrial acyl-CoA dehydrogenase gene product, is a rate-limiting enzyme in long-chain fatty acid beta-oxidation system. cDNA and deduced amino acid sequence and distinct specificities of the cDNA-expressed protein. J Biol Chem. 1994 Jul 22;269(29):19088–19094. [PubMed] [Google Scholar]
  5. Clifton P. M., Chang L., Mackinnon A. M. Development of an automated Lowry protein assay for the Cobas-Bio centrifugal analyzer. Anal Biochem. 1988 Jul;172(1):165–168. doi: 10.1016/0003-2697(88)90426-5. [DOI] [PubMed] [Google Scholar]
  6. Dashti N., Ontko J. A. Rate-limiting function of 3-hydroxy-3-methylglutaryl-coenzyme A synthase in ketogenesis. Biochem Med. 1979 Dec;22(3):365–374. doi: 10.1016/0006-2944(79)90024-3. [DOI] [PubMed] [Google Scholar]
  7. Drynan L., Quant P. A., Zammit V. A. Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over beta-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states. Biochem J. 1996 Aug 1;317(Pt 3):791–795. doi: 10.1042/bj3170791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fell D. A. Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J. 1992 Sep 1;286(Pt 2):313–330. doi: 10.1042/bj2860313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fong J. C., Schulz H. On the rate-determining step of fatty acid oxidation in heart. Inhibition of fatty acid oxidation by 4-pentenoic acid. J Biol Chem. 1978 Oct 10;253(19):6917–6922. [PubMed] [Google Scholar]
  10. Guzman M., Kolodziej M. P., Caldwell A., Corstorphine C. G., Zammit V. A. Evidence against direct involvement of phosphorylation in the activation of carnitine palmitoyltransferase by okadaic acid in rat hepatocytes. Biochem J. 1994 Jun 15;300(Pt 3):693–699. doi: 10.1042/bj3000693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heinrich R., Rapoport T. A. A linear steady-state treatment of enzymatic chains. Critique of the crossover theorem and a general procedure to identify interaction sites with an effector. Eur J Biochem. 1974 Feb 15;42(1):97–105. doi: 10.1111/j.1432-1033.1974.tb03319.x. [DOI] [PubMed] [Google Scholar]
  12. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  13. Kunz W. S. Application of the theory of steady-state flux control to mitochondrial beta-oxidation. Biomed Biochim Acta. 1991;50(12):1143–1157. [PubMed] [Google Scholar]
  14. Lilly K., Bugaisky G. E., Umeda P. K., Bieber L. L. The medium-chain carnitine acyltransferase activity associated with rat liver microsomes is malonyl-CoA sensitive. Arch Biochem Biophys. 1990 Jul;280(1):167–174. doi: 10.1016/0003-9861(90)90532-4. [DOI] [PubMed] [Google Scholar]
  15. Lilly K., Chung C., Kerner J., VanRenterghem R., Bieber L. L. Effect of etomoxiryl-CoA on different carnitine acyltransferases. Biochem Pharmacol. 1992 Jan 22;43(2):353–361. doi: 10.1016/0006-2952(92)90298-w. [DOI] [PubMed] [Google Scholar]
  16. Makins R. A., Drynan L. F., Zammit V. A., Quant P. A. Top-down regulation analyses of palmitoyl-CoA oxidation and ketogenesis in isolated rat liver mitochondria. Biochem Soc Trans. 1995 May;23(2):288S–288S. doi: 10.1042/bst023288s. [DOI] [PubMed] [Google Scholar]
  17. McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
  18. Murthy M. S., Pande S. V. Malonyl-CoA-sensitive and -insensitive carnitine palmitoyltransferase activities of microsomes are due to different proteins. J Biol Chem. 1994 Jul 15;269(28):18283–18286. [PubMed] [Google Scholar]
  19. Quant P. A., Makins R. A. Metabolic control analysis of hepatic beta-oxidation: the top-down approach. Biochem Soc Trans. 1994 May;22(2):441–446. doi: 10.1042/bst0220441. [DOI] [PubMed] [Google Scholar]
  20. Quant P. A., Robin D., Robin P., Girard J., Brand M. D. A top-down control analysis in isolated rat liver mitochondria: can the 3-hydroxy-3-methylglutaryl-CoA pathway be rate-controlling for ketogenesis? Biochim Biophys Acta. 1993 Feb 13;1156(2):135–143. doi: 10.1016/0304-4165(93)90128-u. [DOI] [PubMed] [Google Scholar]
  21. Quant P. A., Robin D., Robin P., Girard J., Brand M. D. Control of acetoacetate production from exogenous palmitoyl-CoA in isolated rat liver mitochondria. Biochem Soc Trans. 1989 Dec;17(6):1089–1090. doi: 10.1042/bst0171089. [DOI] [PubMed] [Google Scholar]
  22. Quant P. A. The role of mitochondrial HMG-CoA synthase in regulation of ketogenesis. Essays Biochem. 1994;28:13–25. [PubMed] [Google Scholar]
  23. Sherratt H. S. Introduction: the regulation of fatty acid oxidation in cells. Biochem Soc Trans. 1994 May;22(2):421–422. doi: 10.1042/bst0220421. [DOI] [PubMed] [Google Scholar]
  24. Small J. R. Flux control coefficients determined by inhibitor titration: the design and analysis of experiments to minimize errors. Biochem J. 1993 Dec 1;296(Pt 2):423–433. doi: 10.1042/bj2960423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spurway T. D., Agius L., Stanley H., Sherratt A., Pogson C. I. Measurement of carnitine palmitoyltransferase I in hepatocyte monolayers. Biochem Soc Trans. 1994 May;22(2):118S–118S. doi: 10.1042/bst022118s. [DOI] [PubMed] [Google Scholar]
  26. Waterson R. M., Hill R. L. Enoyl coenzyme A hydratase (crotonase). Catalytic properties of crotonase and its possible regulatory role in fatty acid oxidation. J Biol Chem. 1972 Aug 25;247(16):5258–5265. [PubMed] [Google Scholar]
  27. Zammit V. A., Moir A. M. Monitoring the partitioning of hepatic fatty acids in vivo: keeping track of control. Trends Biochem Sci. 1994 Aug;19(8):313–317. doi: 10.1016/0968-0004(94)90068-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES