Abstract
Terminal Fucalpha(1-2)Galbeta epitopes have been proposed to play significant roles in cell-cell interactions in development, cell adhesion, and malignant transformation. To begin to investigate the regulation and function of alpha(1-2)fucosylated epitopes in an animal model, we have isolated and characterized a mouse genomic DNA segment encoding a protein orthologous to the human H blood group locus alpha(1,2)fucosyltransferase (FUT1). This segment maintains an open reading frame encoding 376 amino acids sharing 75% sequence identity with the enzyme encoded by human FUT1, and 55% sequence identity with the enzyme encoded by the human Secretor blood group locus (FUT2). Expression of the open reading frame in COS-7 cells yields an alpha(1,2)fucosyltransferase activity with a Km of 7.6 mM for phenyl-beta-d-galactoside. Southern blotting and interspecific backcross analyses indicate that this murine locus represents a single copy sequence mapping to a novel locus 2.1 centimorgans from the Klk1 locus, in a region of homology between mouse chromosome 7 and the human FUT1 locus on the long arm of chromosome 19. Mouse FUT1 yields a 2.8 kb mRNA transcript identifiable in many organs, including thymus, lung, stomach, pancreas, small intestine, colon, uterus and epidiymis. Hybridization analyses in situ localize expression of FUT1 transcripts to thymic medullary and epididymal epithelial cells, implying that this gene determines the expression of cell surface Fucalpha(1-2)Galbeta epitopes in these tissues.
Full Text
The Full Text of this article is available as a PDF (867.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baldissarro I., Marroni P., Smilovich D., Capra M. C., Marimpietri D., Montalti S., Severi A. B., Grossi C. E., Cosulich M. E. Biochemical characterization and membrane expression of an antigen shared by activated and neoplastic cells of neuroectodermal origin. J Neuroimmunol. 1995 Mar;57(1-2):17–26. doi: 10.1016/0165-5728(94)00157-j. [DOI] [PubMed] [Google Scholar]
- Basu M., De T., Das K. K., Kyle J. W., Chon H. C., Schaeper R. J., Basu S. Glycolipids. Methods Enzymol. 1987;138:575–607. doi: 10.1016/0076-6879(87)38053-x. [DOI] [PubMed] [Google Scholar]
- Bennett G. Synthesis and migration of glycoproteins in cells of the rat thymus, as shown by radioautography after 3H-fucose injection. Am J Anat. 1978 Jun;152(2):223–255. doi: 10.1002/aja.1001520205. [DOI] [PubMed] [Google Scholar]
- Brennan J., Takei F., Wong S., Mager D. L. Carbohydrate recognition by a natural killer cell receptor, Ly-49C. J Biol Chem. 1995 Apr 28;270(17):9691–9694. doi: 10.1074/jbc.270.17.9691. [DOI] [PubMed] [Google Scholar]
- Brezicka F. T., Olling S., Nilsson O., Bergh J., Holmgren J., Sörenson S., Yngvason F., Lindholm L. Immunohistological detection of fucosyl-GM1 ganglioside in human lung cancer and normal tissues with monoclonal antibodies. Cancer Res. 1989 Mar 1;49(5):1300–1305. [PubMed] [Google Scholar]
- Brown A., Ellis I. O., Embleton M. J., Baldwin R. W., Turner D. R., Hardcastle J. D. Immunohistochemical localization of Y hapten and the structurally related H type-2 blood-group antigen on large-bowel tumours and normal adult tissues. Int J Cancer. 1984 Jun 15;33(6):727–736. doi: 10.1002/ijc.2910330604. [DOI] [PubMed] [Google Scholar]
- Bry L., Falk P. G., Midtvedt T., Gordon J. I. A model of host-microbial interactions in an open mammalian ecosystem. Science. 1996 Sep 6;273(5280):1380–1383. doi: 10.1126/science.273.5280.1380. [DOI] [PubMed] [Google Scholar]
- Clausen H., Bennett E. P., Grunnet N. Molecular genetics of ABO histo-blood groups. Transfus Clin Biol. 1994;1(2):79–89. doi: 10.1016/s1246-7820(94)80001-4. [DOI] [PubMed] [Google Scholar]
- Cohney S., Mouhtouris E., McKenzie I. F., Sandrin M. S. Molecular cloning of the gene coding for pig alpha1-->2fucosyltransferase. Immunogenetics. 1996;44(1):76–79. doi: 10.1007/BF02602660. [DOI] [PubMed] [Google Scholar]
- Cossu G., Boitani C. Lactosaminoglycans synthesized by mouse male germ cells are fucosylated by an epididymal fucosyltransferase. Dev Biol. 1984 Apr;102(2):402–408. doi: 10.1016/0012-1606(84)90204-5. [DOI] [PubMed] [Google Scholar]
- Dugaiczyk A., Haron J. A., Stone E. M., Dennison O. E., Rothblum K. N., Schwartz R. J. Cloning and sequencing of a deoxyribonucleic acid copy of glyceraldehyde-3-phosphate dehydrogenase messenger ribonucleic acid isolated from chicken muscle. Biochemistry. 1983 Mar 29;22(7):1605–1613. doi: 10.1021/bi00276a013. [DOI] [PubMed] [Google Scholar]
- Ernst L. K., Rajan V. P., Larsen R. D., Ruff M. M., Lowe J. B. Stable expression of blood group H determinants and GDP-L-fucose: beta-D-galactoside 2-alpha-L-fucosyltransferase in mouse cells after transfection with human DNA. J Biol Chem. 1989 Feb 25;264(6):3436–3447. [PubMed] [Google Scholar]
- Falk P. G., Bry L., Holgersson J., Gordon J. I. Expression of a human alpha-1,3/4-fucosyltransferase in the pit cell lineage of FVB/N mouse stomach results in production of Leb-containing glycoconjugates: a potential transgenic mouse model for studying Helicobacter pylori infection. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1515–1519. doi: 10.1073/pnas.92.5.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farr A. G., Anderson S. K. Epithelial heterogeneity in the murine thymus: fucose-specific lectins bind medullary epithelial cells. J Immunol. 1985 May;134(5):2971–2977. [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Ghidoni R., Trinchera M., Venerando B., Fiorilli A., Sonnino S., Tettamanti G. Incorporation and metabolism of exogenous GM1 ganglioside in rat liver. Biochem J. 1986 Jul 1;237(1):147–155. doi: 10.1042/bj2370147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hitoshi S., Koijima N., Kusunoki S., Inokuchi J., Kanazawa I., Tsuji S. Expression of the beta-galactoside alpha 1,2-fucosyltransferase gene suppresses axonal outgrowth of neuro2a neuroblastoma cells. J Neurochem. 1996 Apr;66(4):1633–1640. doi: 10.1046/j.1471-4159.1996.66041633.x. [DOI] [PubMed] [Google Scholar]
- Hitoshi S., Kusunoki S., Kanazawa I., Tsuji S. Molecular cloning and expression of a third type of rabbit GDP-L-fucose:beta-D-galactoside 2-alpha-L-fucosyltransferase. J Biol Chem. 1996 Jul 12;271(28):16975–16981. doi: 10.1074/jbc.271.28.16975. [DOI] [PubMed] [Google Scholar]
- Hitoshi S., Kusunoki S., Kanazawa I., Tsuji S. Molecular cloning and expression of two types of rabbit beta-galactoside alpha 1,2-fucosyltransferase. J Biol Chem. 1995 Apr 14;270(15):8844–8850. doi: 10.1074/jbc.270.15.8844. [DOI] [PubMed] [Google Scholar]
- Jiang W., Swiggard W. J., Heufler C., Peng M., Mirza A., Steinman R. M., Nussenzweig M. C. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature. 1995 May 11;375(6527):151–155. doi: 10.1038/375151a0. [DOI] [PubMed] [Google Scholar]
- Kelly R. J., Ernst L. K., Larsen R. D., Bryant J. G., Robinson J. S., Lowe J. B. Molecular basis for H blood group deficiency in Bombay (Oh) and para-Bombay individuals. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5843–5847. doi: 10.1073/pnas.91.13.5843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly R. J., Rouquier S., Giorgi D., Lennon G. G., Lowe J. B. Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J Biol Chem. 1995 Mar 3;270(9):4640–4649. doi: 10.1074/jbc.270.9.4640. [DOI] [PubMed] [Google Scholar]
- Kim Y. S., Itzkowitz S. H., Yuan M., Chung Y., Satake K., Umeyama K., Hakomori S. Lex and Ley antigen expression in human pancreatic cancer. Cancer Res. 1988 Jan 15;48(2):475–482. [PubMed] [Google Scholar]
- Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
- Kukowska-Latallo J. F., Larsen R. D., Nair R. P., Lowe J. B. A cloned human cDNA determines expression of a mouse stage-specific embryonic antigen and the Lewis blood group alpha(1,3/1,4)fucosyltransferase. Genes Dev. 1990 Aug;4(8):1288–1303. doi: 10.1101/gad.4.8.1288. [DOI] [PubMed] [Google Scholar]
- Kusunoki S., Chiba A., Shimizu T., Kanazawa I. Unique localization of fucosyl GM1 in rabbit spinal cord and peripheral nerve: immunohistochemical study using monoclonal anti-fucosyl GM1 antibody CRD73-6. Biochim Biophys Acta. 1994 Aug 25;1214(1):27–31. doi: 10.1016/0005-2760(94)90005-1. [DOI] [PubMed] [Google Scholar]
- Kusunoki S., Inoue K., Iwamori M., Nagai Y., Mannen T. Discrimination of human dorsal root ganglion cells by anti-fucosyl GM1 antibody. Brain Res. 1989 Aug 14;494(2):391–395. doi: 10.1016/0006-8993(89)90611-2. [DOI] [PubMed] [Google Scholar]
- Kusunoki S., Inoue K., Iwamori M., Nagai Y., Mannen T., Kanazawa I. Developmental changes of fucosylated glycoconjugates in rabbit dorsal root ganglia. Neurosci Res. 1992 Oct;15(1-2):74–80. doi: 10.1016/0168-0102(92)90019-9. [DOI] [PubMed] [Google Scholar]
- Larsen R. D., Ernst L. K., Nair R. P., Lowe J. B. Molecular cloning, sequence, and expression of a human GDP-L-fucose:beta-D-galactoside 2-alpha-L-fucosyltransferase cDNA that can form the H blood group antigen. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6674–6678. doi: 10.1073/pnas.87.17.6674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindenberg S., Sundberg K., Kimber S. J., Lundblad A. The milk oligosaccharide, lacto-N-fucopentaose I, inhibits attachment of mouse blastocysts on endometrial monolayers. J Reprod Fertil. 1988 May;83(1):149–158. doi: 10.1530/jrf.0.0830149. [DOI] [PubMed] [Google Scholar]
- Lowe J. B., Kukowska-Latallo J. F., Nair R. P., Larsen R. D., Marks R. M., Macher B. A., Kelly R. J., Ernst L. K. Molecular cloning of a human fucosyltransferase gene that determines expression of the Lewis x and VIM-2 epitopes but not ELAM-1-dependent cell adhesion. J Biol Chem. 1991 Sep 15;266(26):17467–17477. [PubMed] [Google Scholar]
- Lowe J. B. Molecular cloning, expression, and uses of mammalian glycosyltransferases. Semin Cell Biol. 1991 Oct;2(5):289–307. [PubMed] [Google Scholar]
- Malý P., Thall A., Petryniak B., Rogers C. E., Smith P. L., Marks R. M., Kelly R. J., Gersten K. M., Cheng G., Saunders T. L. The alpha(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell. 1996 Aug 23;86(4):643–653. doi: 10.1016/s0092-8674(00)80137-3. [DOI] [PubMed] [Google Scholar]
- Nagai M., Davè V., Kaplan B. E., Yoshida A. Human blood group glycosyltransferases. I. Purification of n-acetylgalactosaminyltransferase. J Biol Chem. 1978 Jan 25;253(2):377–379. [PubMed] [Google Scholar]
- Nagai M., Davè V., Muensch H., Yoshida A. Human blood group glycosyltransferase. II. Purification of galactosyltransferase. J Biol Chem. 1978 Jan 25;253(2):380–381. [PubMed] [Google Scholar]
- Oriol R. Genetic control of the fucosylation of ABH precursor chains. Evidence for new epistatic interactions in different cells and tissues. J Immunogenet. 1990 Aug-Oct;17(4-5):235–245. doi: 10.1111/j.1744-313x.1990.tb00877.x. [DOI] [PubMed] [Google Scholar]
- Oriol R., Le Pendu J., Mollicone R. Genetics of ABO, H, Lewis, X and related antigens. Vox Sang. 1986;51(3):161–171. doi: 10.1111/j.1423-0410.1986.tb01946.x. [DOI] [PubMed] [Google Scholar]
- Orntoft T. F., Greenwell P., Clausen H., Watkins W. M. Regulation of the oncodevelopmental expression of type 1 chain ABH and Lewis(b) blood group antigens in human colon by alpha-2-L-fucosylation. Gut. 1991 Mar;32(3):287–293. doi: 10.1136/gut.32.3.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perillo N. L., Pace K. E., Seilhamer J. J., Baum L. G. Apoptosis of T cells mediated by galectin-1. Nature. 1995 Dec 14;378(6558):736–739. doi: 10.1038/378736a0. [DOI] [PubMed] [Google Scholar]
- Piau J. P., Labarriere N., Dabouis G., Denis M. G. Evidence for two distinct alpha(1,2)-fucosyltransferase genes differentially expressed throughout the rat colon. Biochem J. 1994 Jun 15;300(Pt 3):623–626. doi: 10.1042/bj3000623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rajan V. P., Larsen R. D., Ajmera S., Ernst L. K., Lowe J. B. A cloned human DNA restriction fragment determines expression of a GDP-L-fucose: beta-D-galactoside 2-alpha-L-fucosyltransferase in transfected cells. Evidence for isolation and transfer of the human H blood group locus. J Biol Chem. 1989 Jul 5;264(19):11158–11167. [PubMed] [Google Scholar]
- Ram P. A., Cardullo R. A., Millette C. F. Expression and topographical localization of cell surface fucosyltransferase activity during epididymal sperm maturation in the mouse. Gamete Res. 1989 Mar;22(3):321–332. doi: 10.1002/mrd.1120220309. [DOI] [PubMed] [Google Scholar]
- Raychoudhury S. S., Millette C. F. Presence of multiple fucosyltransferases in rat Sertoli cells and spermatogenic cells. Biol Reprod. 1994 Nov;51(5):1006–1013. doi: 10.1095/biolreprod51.5.1006. [DOI] [PubMed] [Google Scholar]
- Rouquier S., Lowe J. B., Kelly R. J., Fertitta A. L., Lennon G. G., Giorgi D. Molecular cloning of a human genomic region containing the H blood group alpha(1,2)fucosyltransferase gene and two H locus-related DNA restriction fragments. Isolation of a candidate for the human Secretor blood group locus. J Biol Chem. 1995 Mar 3;270(9):4632–4639. doi: 10.1074/jbc.270.9.4632. [DOI] [PubMed] [Google Scholar]
- Rowe L. B., Nadeau J. H., Turner R., Frankel W. N., Letts V. A., Eppig J. T., Ko M. S., Thurston S. J., Birkenmeier E. H. Maps from two interspecific backcross DNA panels available as a community genetic mapping resource. Mamm Genome. 1994 May;5(5):253–274. doi: 10.1007/BF00389540. [DOI] [PubMed] [Google Scholar]
- Ruggiero-Lopez D., Biol M. C., Louisot P., Martin A. Participation of an endogenous inhibitor of fucosyltransferase activities in the developmental regulation of intestinal fucosylation processes. Biochem J. 1991 Nov 1;279(Pt 3):801–806. doi: 10.1042/bj2790801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singhal A., Hakomori S. Molecular changes in carbohydrate antigens associated with cancer. Bioessays. 1990 May;12(5):223–230. doi: 10.1002/bies.950120506. [DOI] [PubMed] [Google Scholar]
- Smith P. L., Gersten K. M., Petryniak B., Kelly R. J., Rogers C., Natsuka Y., Alford J. A., 3rd, Scheidegger E. P., Natsuka S., Lowe J. B. Expression of the alpha(1,3)fucosyltransferase Fuc-TVII in lymphoid aggregate high endothelial venules correlates with expression of L-selectin ligands. J Biol Chem. 1996 Apr 5;271(14):8250–8259. doi: 10.1074/jbc.271.14.8250. [DOI] [PubMed] [Google Scholar]
- Stapleton A., Nudelman E., Clausen H., Hakomori S., Stamm W. E. Binding of uropathogenic Escherichia coli R45 to glycolipids extracted from vaginal epithelial cells is dependent on histo-blood group secretor status. J Clin Invest. 1992 Sep;90(3):965–972. doi: 10.1172/JCI115973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun J., Thurin J., Cooper H. S., Wang P., Mackiewicz M., Steplewski Z., Blaszczyk-Thurin M. Elevated expression of H type GDP-L-fucose:beta-D-galactoside alpha-2-L-fucosyltransferase is associated with human colon adenocarcinoma progression. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5724–5728. doi: 10.1073/pnas.92.12.5724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uchida E., Steplewski Z., Mroczek E., Büchler M., Burnett D., Pour P. M. Presence of two distinct acinar cell populations in human pancreas based on their antigenicity. Int J Pancreatol. 1986 Oct;1(3-4):213–225. doi: 10.1007/BF02795247. [DOI] [PubMed] [Google Scholar]
- Uemura K., Yokota Y., Kozutsumi Y., Kawasaki T. A unique CD45 glycoform recognized by the serum mannan-binding protein in immature thymocytes. J Biol Chem. 1996 Mar 1;271(9):4581–4584. doi: 10.1074/jbc.271.9.4581. [DOI] [PubMed] [Google Scholar]
- Umesaki Y., Okada Y., Matsumoto S., Imaoka A., Setoyama H. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol Immunol. 1995;39(8):555–562. doi: 10.1111/j.1348-0421.1995.tb02242.x. [DOI] [PubMed] [Google Scholar]
- Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 1993 Apr;3(2):97–130. doi: 10.1093/glycob/3.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshino H., Ariga T., Latov N., Miyatake T., Kushi Y., Kasama T., Handa S., Yu R. K. Fucosyl-GM1 in human sensory nervous tissue is a target antigen in patients with autoimmune neuropathies. J Neurochem. 1993 Aug;61(2):658–663. doi: 10.1111/j.1471-4159.1993.tb02170.x. [DOI] [PubMed] [Google Scholar]