Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Dec 15;328(Pt 3):847–854. doi: 10.1042/bj3280847

Excess putrescine accumulation inhibits the formation of modified eukaryotic initiation factor 5A (eIF-5A) and induces apoptosis.

M E Tome 1, S M Fiser 1, C M Payne 1, E W Gerner 1
PMCID: PMC1218996  PMID: 9396730

Abstract

DH23A cells, an alpha-difluoromethylornithine-resistant variant of the parental hepatoma tissue culture cells, express high levels of stable ornithine decarboxylase. Aberrantly high expression of ornithine decarboxylase results in a large accumulation of endogenous putrescine and increased apoptosis in DH23A cells when alpha-difluoromethylornithine is removed from the culture. Treatment of DH23A cells with exogenous putrescine in the presence of alpha-difluoromethylornithine mimics the effect of drug removal, suggesting that putrescine is a causative agent or trigger of apoptosis. Accumulation of excess intracellular putrescine inhibits the formation of hypusine in vivo, a reaction that proceeds by the transfer of the butylamine moiety of spermidine to a lysine residue in eukaryotic initiation factor 5A (eIF-5A). Treatment of DH23A cells with diaminoheptane, a competitive inhibitor of the post-translational modification of eIF-5A, causes both the suppression of eIF-5A modification in vivo and induction of apoptosis. These data support the hypothesis that rapid degradation of ornithine decarboxylase is a protective mechanism to avoid cell toxicity from putrescine accumulation. Further, these data suggest that suppression of modified eIF-5A formation is one mechanism by which cells may be induced to undergo apoptosis.

Full Text

The Full Text of this article is available as a PDF (683.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamsen M. S., Morris D. R. Cell type-specific mechanisms of regulating expression of the ornithine decarboxylase gene after growth stimulation. Mol Cell Biol. 1990 Oct;10(10):5525–5528. doi: 10.1128/mcb.10.10.5525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anehus S., Pohjanpelto P., Baldetorp B., Långström E., Heby O. Polyamine starvation prolongs the S and G2 phases of polyamine-dependent (arginase-deficient) CHO cells. Mol Cell Biol. 1984 May;4(5):915–922. doi: 10.1128/mcb.4.5.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bevec D., Jaksche H., Oft M., Wöhl T., Himmelspach M., Pacher A., Schebesta M., Koettnitz K., Dobrovnik M., Csonga R. Inhibition of HIV-1 replication in lymphocytes by mutants of the Rev cofactor eIF-5A. Science. 1996 Mar 29;271(5257):1858–1860. doi: 10.1126/science.271.5257.1858. [DOI] [PubMed] [Google Scholar]
  4. Brunton V. G., Grant M. H., Wallace H. M. Mechanisms of spermine toxicity in baby-hamster kidney (BHK) cells. The role of amine oxidases and oxidative stress. Biochem J. 1991 Nov 15;280(Pt 1):193–198. doi: 10.1042/bj2800193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brüne B., Hartzell P., Nicotera P., Orrenius S. Spermine prevents endonuclease activation and apoptosis in thymocytes. Exp Cell Res. 1991 Aug;195(2):323–329. doi: 10.1016/0014-4827(91)90380-d. [DOI] [PubMed] [Google Scholar]
  6. Byers T. L., Ganem B., Pegg A. E. Cytostasis induced in L1210 murine leukaemia cells by the S-adenosyl-L-methionine decarboxylase inhibitor 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxyadenosine may be due to hypusine depletion. Biochem J. 1992 Nov 1;287(Pt 3):717–724. doi: 10.1042/bj2870717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Byers T. L., Lakanen J. R., Coward J. K., Pegg A. E. The role of hypusine depletion in cytostasis induced by S-adenosyl-L-methionine decarboxylase inhibition: new evidence provided by 1-methylspermidine and 1,12-dimethylspermine. Biochem J. 1994 Oct 15;303(Pt 2):363–368. doi: 10.1042/bj3030363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Byers T. L., Wiest L., Wechter R. S., Pegg A. E. Effects of chronic 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxy- adenosine (AbeAdo) treatment on polyamine and eIF-5A metabolism in AbeAdo-sensitive and -resistant L1210 murine leukaemia cells. Biochem J. 1993 Feb 15;290(Pt 1):115–121. doi: 10.1042/bj2900115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen Z. P., Chen K. Y. Mechanism of regulation of ornithine decarboxylase gene expression by asparagine in a variant mouse neuroblastoma cell line. J Biol Chem. 1992 Apr 5;267(10):6946–6951. [PubMed] [Google Scholar]
  10. Chen Z. P., Yan Y. P., Ding Q. J., Knapp S., Potenza J. A., Schugar H. J., Chen K. Y. Effects of inhibitors of deoxyhypusine synthase on the differentiation of mouse neuroblastoma and erythroleukemia cells. Cancer Lett. 1996 Aug 2;105(2):233–239. doi: 10.1016/0304-3835(96)04287-5. [DOI] [PubMed] [Google Scholar]
  11. Davidoff A. N., Mendelow B. V. Unexpected cytokinetic effects induced by puromycin include a G2-arrest, a metaphase-mitotic-arrest, and apoptosis. Leuk Res. 1992 Nov;16(11):1077–1085. doi: 10.1016/0145-2126(92)90046-a. [DOI] [PubMed] [Google Scholar]
  12. Davis R. H. Management of polyamine pools and the regulation of ornithine decarboxylase. J Cell Biochem. 1990 Dec;44(4):199–205. doi: 10.1002/jcb.240440402. [DOI] [PubMed] [Google Scholar]
  13. Davis R. H., Ristow J. L. Polyamine toxicity in Neurospora crassa: protective role of the vacuole. Arch Biochem Biophys. 1991 Mar;285(2):306–311. doi: 10.1016/0003-9861(91)90364-o. [DOI] [PubMed] [Google Scholar]
  14. Desiderio M. A., Grassilli E., Bellesia E., Salomoni P., Franceschi C. Involvement of ornithine decarboxylase and polyamines in glucocorticoid-induced apoptosis of rat thymocytes. Cell Growth Differ. 1995 May;6(5):505–513. [PubMed] [Google Scholar]
  15. Gahl W. A., Pitot H. C. Reversal by aminoguanidine of the inhibition of proliferation of human fibroblasts by spermidine and spermine. Chem Biol Interact. 1978 Jul;22(1):91–98. doi: 10.1016/0009-2797(78)90152-7. [DOI] [PubMed] [Google Scholar]
  16. Gilad G. M., Dornay M., Gilad V. H. Polyamine treatment in early development leads to increased numbers of rat sympathetic neurons. Brain Res. 1985 Dec 2;348(2):363–366. doi: 10.1016/0006-8993(85)90458-5. [DOI] [PubMed] [Google Scholar]
  17. Gilad G. M., Gilad V. H. Polyamines can protect against ischemia-induced nerve cell death in gerbil forebrain. Exp Neurol. 1991 Mar;111(3):349–355. doi: 10.1016/0014-4886(91)90102-i. [DOI] [PubMed] [Google Scholar]
  18. Greenberg M. E., Greene L. A., Ziff E. B. Nerve growth factor and epidermal growth factor induce rapid transient changes in proto-oncogene transcription in PC12 cells. J Biol Chem. 1985 Nov 15;260(26):14101–14110. [PubMed] [Google Scholar]
  19. Guarino L. A., Cohen S. S. Mechanism of toxicity of putrescine in Anacystis nidulans. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3660–3664. doi: 10.1073/pnas.76.8.3660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hanauske-Abel H. M., Park M. H., Hanauske A. R., Popowicz A. M., Lalande M., Folk J. E. Inhibition of the G1-S transition of the cell cycle by inhibitors of deoxyhypusine hydroxylation. Biochim Biophys Acta. 1994 Mar 31;1221(2):115–124. doi: 10.1016/0167-4889(94)90003-5. [DOI] [PubMed] [Google Scholar]
  21. Hanauske-Abel H. M., Slowinska B., Zagulska S., Wilson R. C., Staiano-Coico L., Hanauske A. R., McCaffrey T., Szabo P. Detection of a sub-set of polysomal mRNAs associated with modulation of hypusine formation at the G1-S boundary. Proposal of a role for eIF-5A in onset of DNA replication. FEBS Lett. 1995 Jun 12;366(2-3):92–98. doi: 10.1016/0014-5793(95)00493-s. [DOI] [PubMed] [Google Scholar]
  22. Hayashi S., Murakami Y. Rapid and regulated degradation of ornithine decarboxylase. Biochem J. 1995 Feb 15;306(Pt 1):1–10. doi: 10.1042/bj3060001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Heby O., Persson L. Molecular genetics of polyamine synthesis in eukaryotic cells. Trends Biochem Sci. 1990 Apr;15(4):153–158. doi: 10.1016/0968-0004(90)90216-x. [DOI] [PubMed] [Google Scholar]
  24. Hölttä E., Sistonen L., Alitalo K. The mechanisms of ornithine decarboxylase deregulation in c-Ha-ras oncogene-transformed NIH 3T3 cells. J Biol Chem. 1988 Mar 25;263(9):4500–4507. [PubMed] [Google Scholar]
  25. Ito K., Kashiwagi K., Watanabe S., Kameji T., Hayashi S., Igarashi K. Influence of the 5'-untranslated region of ornithine decarboxylase mRNA and spermidine on ornithine decarboxylase synthesis. J Biol Chem. 1990 Aug 5;265(22):13036–13041. [PubMed] [Google Scholar]
  26. Jakus J., Wolff E. C., Park M. H., Folk J. E. Features of the spermidine-binding site of deoxyhypusine synthase as derived from inhibition studies. Effective inhibition by bis- and mono-guanylated diamines and polyamines. J Biol Chem. 1993 Jun 25;268(18):13151–13159. [PubMed] [Google Scholar]
  27. Kameji T., Pegg A. E. Inhibition of translation of mRNAs for ornithine decarboxylase and S-adenosylmethionine decarboxylase by polyamines. J Biol Chem. 1987 Feb 25;262(6):2427–2430. [PubMed] [Google Scholar]
  28. Kang H. A., Hershey J. W. Effect of initiation factor eIF-5A depletion on protein synthesis and proliferation of Saccharomyces cerevisiae. J Biol Chem. 1994 Feb 11;269(6):3934–3940. [PubMed] [Google Scholar]
  29. Khan A. U., Mei Y. H., Wilson T. A proposed function for spermine and spermidine: protection of replicating DNA against damage by singlet oxygen. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11426–11427. doi: 10.1073/pnas.89.23.11426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kimes B. W., Morris D. R. Preparation and stability of oxidized polyamines. Biochim Biophys Acta. 1971 Jan 1;228(1):223–234. doi: 10.1016/0005-2787(71)90562-4. [DOI] [PubMed] [Google Scholar]
  31. Lee Y. B., Park M. H., Folk J. E. Diamine and triamine analogs and derivatives as inhibitors of deoxyhypusine synthase: synthesis and biological activity. J Med Chem. 1995 Aug 4;38(16):3053–3061. doi: 10.1021/jm00016a008. [DOI] [PubMed] [Google Scholar]
  32. Lövkvist E., Stjernborg L., Persson L. Feedback regulation of mammalian ornithine decarboxylase. Studies using a transient expression system. Eur J Biochem. 1993 Aug 1;215(3):753–759. doi: 10.1111/j.1432-1033.1993.tb18089.x. [DOI] [PubMed] [Google Scholar]
  33. Marton L. J., Pegg A. E. Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol. 1995;35:55–91. doi: 10.1146/annurev.pa.35.040195.000415. [DOI] [PubMed] [Google Scholar]
  34. McCloskey D. E., Casero R. A., Jr, Woster P. M., Davidson N. E. Induction of programmed cell death in human breast cancer cells by an unsymmetrically alkylated polyamine analogue. Cancer Res. 1995 Aug 1;55(15):3233–3236. [PubMed] [Google Scholar]
  35. Mitchell J. L., Diveley R. R., Jr, Bareyal-Leyser A., Mitchell J. L. Abnormal accumulation and toxicity of polyamines in a difluoromethylornithine-resistant HTC cell variant. Biochim Biophys Acta. 1992 Aug 12;1136(2):136–142. doi: 10.1016/0167-4889(92)90248-a. [DOI] [PubMed] [Google Scholar]
  36. Mitchell J. L., Hoff J. A., Bareyal-Leyser A. Stable ornithine decarboxylase in a rat hepatoma cell line selected for resistance to alpha-difluoromethylornithine. Arch Biochem Biophys. 1991 Oct;290(1):143–152. doi: 10.1016/0003-9861(91)90600-n. [DOI] [PubMed] [Google Scholar]
  37. Morris D. R. A new perspective on ornithine decarboxylase regulation: prevention of polyamine toxicity is the overriding theme. J Cell Biochem. 1991 Jun;46(2):102–105. doi: 10.1002/jcb.240460203. [DOI] [PubMed] [Google Scholar]
  38. Murphey R. J., Gerner E. W. Hypusine formation in protein by a two-step process in cell lysates. J Biol Chem. 1987 Nov 5;262(31):15033–15036. [PubMed] [Google Scholar]
  39. Oren M. Relationship of p53 to the control of apoptotic cell death. Semin Cancer Biol. 1994 Jun;5(3):221–227. [PubMed] [Google Scholar]
  40. Packham G., Cleveland J. L. Ornithine decarboxylase is a mediator of c-Myc-induced apoptosis. Mol Cell Biol. 1994 Sep;14(9):5741–5747. doi: 10.1128/mcb.14.9.5741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Park M. H. The essential role of hypusine in eukaryotic translation initiation factor 4D (eIF-4D). Purification of eIF-4D and its precursors and comparison of their activities. J Biol Chem. 1989 Nov 5;264(31):18531–18535. [PubMed] [Google Scholar]
  42. Park M. H., Wolff E. C., Lee Y. B., Folk J. E. Antiproliferative effects of inhibitors of deoxyhypusine synthase. Inhibition of growth of Chinese hamster ovary cells by guanyl diamines. J Biol Chem. 1994 Nov 11;269(45):27827–27832. [PubMed] [Google Scholar]
  43. Payne C. M., Bjore C. G., Jr, Schultz D. A. Change in the frequency of apoptosis after low- and high-dose X-irradiation of human lymphocytes. J Leukoc Biol. 1992 Oct;52(4):433–440. doi: 10.1002/jlb.52.4.433. [DOI] [PubMed] [Google Scholar]
  44. Pegg A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 Feb 15;48(4):759–774. [PubMed] [Google Scholar]
  45. Pohjanpelto P., Nordling S., Knuutila S. Flow cytometric analysis of the cell cycle in polyamine-depleted cells. Cytometry. 1994 Aug 1;16(4):331–338. doi: 10.1002/cyto.990160407. [DOI] [PubMed] [Google Scholar]
  46. Porter C. W., Bergeron R. J. Spermidine requirement for cell proliferation in eukaryotic cells: structural specificity and quantitation. Science. 1983 Mar 4;219(4588):1083–1085. doi: 10.1126/science.6823570. [DOI] [PubMed] [Google Scholar]
  47. Ruhl M., Himmelspach M., Bahr G. M., Hammerschmid F., Jaksche H., Wolff B., Aschauer H., Farrington G. K., Probst H., Bevec D. Eukaryotic initiation factor 5A is a cellular target of the human immunodeficiency virus type 1 Rev activation domain mediating trans-activation. J Cell Biol. 1993 Dec;123(6 Pt 1):1309–1320. doi: 10.1083/jcb.123.6.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Rupniak H. T., Paul D. Inhibition of spermidine and spermine synthesis leads to growth arrest of rat embryo fibroblasts in G1. J Cell Physiol. 1978 Feb;94(2):161–170. doi: 10.1002/jcp.1040940205. [DOI] [PubMed] [Google Scholar]
  49. Sasaki K., Abid M. R., Miyazaki M. Deoxyhypusine synthase gene is essential for cell viability in the yeast Saccharomyces cerevisiae. FEBS Lett. 1996 Apr 15;384(2):151–154. doi: 10.1016/0014-5793(96)00310-9. [DOI] [PubMed] [Google Scholar]
  50. Schnier J., Schwelberger H. G., Smit-McBride Z., Kang H. A., Hershey J. W. Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1991 Jun;11(6):3105–3114. doi: 10.1128/mcb.11.6.3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Seidenfeld J., Gray J. W., Marton L. J. Depletion of 9L rat brain tumor cell polyamine content by treatment with D,L-alpha-difluoromethylornithine inhibits proliferation and the G1 to S transition. Exp Cell Res. 1981 Jan;131(1):209–216. doi: 10.1016/0014-4827(81)90420-1. [DOI] [PubMed] [Google Scholar]
  52. Seiler N., Knödgen B. High-performance liquid chromatographic procedure for the simultaneous determination of the natural polyamines and their monoacetyl derivatives. J Chromatogr. 1980 Dec 12;221(2):227–235. doi: 10.1016/s0378-4347(00)84307-8. [DOI] [PubMed] [Google Scholar]
  53. Seiler N. Pharmacological properties of the natural polyamines and their depletion by biosynthesis inhibitors as a therapeutic approach. Prog Drug Res. 1991;37:107–159. doi: 10.1007/978-3-0348-7139-6_3. [DOI] [PubMed] [Google Scholar]
  54. Shi X. P., Yin K. C., Ahern J., Davis L. J., Stern A. M., Waxman L. Effects of N1-guanyl-1,7-diaminoheptane, an inhibitor of deoxyhypusine synthase, on the growth of tumorigenic cell lines in culture. Biochim Biophys Acta. 1996 Jan 10;1310(1):119–126. doi: 10.1016/0167-4889(95)00165-4. [DOI] [PubMed] [Google Scholar]
  55. Smit-McBride Z., Schnier J., Kaufman R. J., Hershey J. W. Protein synthesis initiation factor eIF-4D. Functional comparison of native and unhypusinated forms of the protein. J Biol Chem. 1989 Nov 5;264(31):18527–18530. [PubMed] [Google Scholar]
  56. TABOR C. W., TABOR H., BACHRACH U. IDENTIFICATION OF THE AMINOALDEHYDES PRODUCED BY THE OXIDATION OF SPERMINE AND SPERMIDINE WITH PURIFIED PLASMA AMINE OXIDASE. J Biol Chem. 1964 Jul;239:2194–2203. [PubMed] [Google Scholar]
  57. Tobias K. E., Kahana C. Exposure to ornithine results in excessive accumulation of putrescine and apoptotic cell death in ornithine decarboxylase overproducing mouse myeloma cells. Cell Growth Differ. 1995 Oct;6(10):1279–1285. [PubMed] [Google Scholar]
  58. Tome M. E., Fiser S. M., Gerner E. W. Consequences of aberrant ornithine decarboxylase regulation in rat hepatoma cells. J Cell Physiol. 1994 Feb;158(2):237–244. doi: 10.1002/jcp.1041580205. [DOI] [PubMed] [Google Scholar]
  59. Tome M. E., Gerner E. W. Hypusine modification in eukaryotic initiation factor 5A in rodent cells selected for resistance to growth inhibition by ornithine decarboxylase-inhibiting drugs. Biochem J. 1996 Nov 15;320(Pt 1):55–60. doi: 10.1042/bj3200055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Wolff E. C., Park M. H., Folk J. E. Cleavage of spermidine as the first step in deoxyhypusine synthesis. The role of NAD. J Biol Chem. 1990 Mar 25;265(9):4793–4799. [PubMed] [Google Scholar]
  61. Xie X., Tome M. E., Gerner E. W. Loss of intracellular putrescine pool-size regulation induces apoptosis. Exp Cell Res. 1997 Feb 1;230(2):386–392. doi: 10.1006/excr.1996.3442. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES