Abstract
Peroxynitrite may contribute to oxidative stress involving neurodegeneration in several disorders, including Alzheimer's disease. As with other reactive oxygen species, peroxynitrite might affect neuronal signalling systems, actions that could contribute to adaptive or deleterious cellular outcomes, but such effects have not previously been studied. To address this issue directly, peroxynitrite (50-500 microM) was administered to human neuroblastoma SH-SY5Y cells to assess its effects on protein tyrosine nitration, phosphoinositide signalling and protein tyrosine phosphorylation. Peroxynitrite rapidly increased the nitrotyrosine immunoreactivity of numerous proteins, primarily in the cytosol. Peroxynitrite inhibited, in a concentration-dependent manner, phosphoinositide hydrolysis stimulated by activation of muscarinic receptors with carbachol and the inhibition was greater after the depletion of cellular glutathione. In comparison, muscarinic receptor-stimulated phosphoinositide hydrolysis in human astrocytoma 1321N1 cells was less vulnerable to inhibition by peroxynitrite either without or with prior depletion of glutathione. There was a large, rapid and reversible increase in the tyrosine phosphorylation of the p120 Src substrate in peroxynitrite-treated SH-SY5Y cells, a response that was potentiated by glutathione depletion; in contrast, peroxynitrite decreased the tyrosine phosphorylation of focal adhesion kinase and paxillin. Tyrosine phosphorylation of p120 in 1321N1 astrocytoma cells was less sensitive to modulation by peroxynitrite. Thus alterations in phosphoinositide signalling and protein tyrosine phosphorylation were greater in neuroblastoma than astrocytoma cells, and modulation of these signalling processes probably contributes to neuronal mechanisms of the response to peroxynitrite.
Full Text
The Full Text of this article is available as a PDF (443.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe K., Pan L. H., Watanabe M., Kato T., Itoyama Y. Induction of nitrotyrosine-like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis. Neurosci Lett. 1995 Oct 20;199(2):152–154. doi: 10.1016/0304-3940(95)12039-7. [DOI] [PubMed] [Google Scholar]
- Bagasra O., Michaels F. H., Zheng Y. M., Bobroski L. E., Spitsin S. V., Fu Z. F., Tawadros R., Koprowski H. Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12041–12045. doi: 10.1073/pnas.92.26.12041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker J. E., Bolaños J. P., Land J. M., Clark J. B., Heales S. J. Glutathione protects astrocytes from peroxynitrite-mediated mitochondrial damage: implications for neuronal/astrocytic trafficking and neurodegeneration. Dev Neurosci. 1996;18(5-6):391–396. doi: 10.1159/000111432. [DOI] [PubMed] [Google Scholar]
- Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beckman J. S., Chen J., Ischiropoulos H., Crow J. P. Oxidative chemistry of peroxynitrite. Methods Enzymol. 1994;233:229–240. doi: 10.1016/s0076-6879(94)33026-3. [DOI] [PubMed] [Google Scholar]
- Berlett B. S., Friguet B., Yim M. B., Chock P. B., Stadtman E. R. Peroxynitrite-mediated nitration of tyrosine residues in Escherichia coli glutamine synthetase mimics adenylylation: relevance to signal transduction. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1776–1780. doi: 10.1073/pnas.93.5.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bolaños J. P., Almeida A., Stewart V., Peuchen S., Land J. M., Clark J. B., Heales S. J. Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neurochem. 1997 Jun;68(6):2227–2240. doi: 10.1046/j.1471-4159.1997.68062227.x. [DOI] [PubMed] [Google Scholar]
- Bolaños J. P., Heales S. J., Land J. M., Clark J. B. Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem. 1995 May;64(5):1965–1972. doi: 10.1046/j.1471-4159.1995.64051965.x. [DOI] [PubMed] [Google Scholar]
- Bowling A. C., Beal M. F. Bioenergetic and oxidative stress in neurodegenerative diseases. Life Sci. 1995;56(14):1151–1171. doi: 10.1016/0024-3205(95)00055-b. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Burridge K., Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol. 1996;12:463–518. doi: 10.1146/annurev.cellbio.12.1.463. [DOI] [PubMed] [Google Scholar]
- Chou S. M., Wang H. S., Komai K. Colocalization of NOS and SOD1 in neurofilament accumulation within motor neurons of amyotrophic lateral sclerosis: an immunohistochemical study. J Chem Neuroanat. 1996 Jun;10(3-4):249–258. doi: 10.1016/0891-0618(96)00137-8. [DOI] [PubMed] [Google Scholar]
- Estévez A. G., Radi R., Barbeito L., Shin J. T., Thompson J. A., Beckman J. S. Peroxynitrite-induced cytotoxicity in PC12 cells: evidence for an apoptotic mechanism differentially modulated by neurotrophic factors. J Neurochem. 1995 Oct;65(4):1543–1550. doi: 10.1046/j.1471-4159.1995.65041543.x. [DOI] [PubMed] [Google Scholar]
- Fisher S. K. Homologous and heterologous regulation of receptor-stimulated phosphoinositide hydrolysis. Eur J Pharmacol. 1995 Feb 15;288(3):231–250. doi: 10.1016/0922-4106(95)90035-7. [DOI] [PubMed] [Google Scholar]
- Good P. F., Werner P., Hsu A., Olanow C. W., Perl D. P. Evidence of neuronal oxidative damage in Alzheimer's disease. Am J Pathol. 1996 Jul;149(1):21–28. [PMC free article] [PubMed] [Google Scholar]
- Gow A. J., Duran D., Malcolm S., Ischiropoulos H. Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Lett. 1996 Apr 29;385(1-2):63–66. doi: 10.1016/0014-5793(96)00347-x. [DOI] [PubMed] [Google Scholar]
- Gow A. J., Duran D., Malcolm S., Ischiropoulos H. Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Lett. 1996 Apr 29;385(1-2):63–66. doi: 10.1016/0014-5793(96)00347-x. [DOI] [PubMed] [Google Scholar]
- Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem. 1992 Nov;59(5):1609–1623. doi: 10.1111/j.1471-4159.1992.tb10990.x. [DOI] [PubMed] [Google Scholar]
- Ischiropoulos H., Zhu L., Chen J., Tsai M., Martin J. C., Smith C. D., Beckman J. S. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys. 1992 Nov 1;298(2):431–437. doi: 10.1016/0003-9861(92)90431-u. [DOI] [PubMed] [Google Scholar]
- Jope R. S., Song L., Powers R. E. Cholinergic activation of phosphoinositide signaling is impaired in Alzheimer's disease brain. Neurobiol Aging. 1997 Jan-Feb;18(1):111–120. doi: 10.1016/s0197-4580(96)00205-9. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lander H. M. An essential role for free radicals and derived species in signal transduction. FASEB J. 1997 Feb;11(2):118–124. [PubMed] [Google Scholar]
- Li X., Song L., Jope R. S. Cholinergic stimulation of AP-1 and NF kappa B transcription factors is differentially sensitive to oxidative stress in SH-SY5Y neuroblastoma: relationship to phosphoinositide hydrolysis. J Neurosci. 1996 Oct 1;16(19):5914–5922. doi: 10.1523/JNEUROSCI.16-19-05914.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markesbery W. R. Oxidative stress hypothesis in Alzheimer's disease. Free Radic Biol Med. 1997;23(1):134–147. doi: 10.1016/s0891-5849(96)00629-6. [DOI] [PubMed] [Google Scholar]
- Masters S. B., Harden T. K., Brown J. H. Relationships between phosphoinositide and calcium responses to muscarinic agonists in astrocytoma cells. Mol Pharmacol. 1984 Sep;26(2):149–155. [PubMed] [Google Scholar]
- Mondoro T. H., Shafer B. C., Vostal J. G. Peroxynitrite-induced tyrosine nitration and phosphorylation in human platelets. Free Radic Biol Med. 1997;22(6):1055–1063. doi: 10.1016/s0891-5849(96)00510-2. [DOI] [PubMed] [Google Scholar]
- Muijsers R. B., Folkerts G., Henricks P. A., Sadeghi-Hashjin G., Nijkamp F. P. Peroxynitrite: a two-faced metabolite of nitric oxide. Life Sci. 1997;60(21):1833–1845. doi: 10.1016/s0024-3205(96)00651-0. [DOI] [PubMed] [Google Scholar]
- Pacheco M. A., Jope R. S. Phosphoinositide signaling in human brain. Prog Neurobiol. 1996 Oct;50(2-3):255–273. doi: 10.1016/s0301-0082(96)00035-4. [DOI] [PubMed] [Google Scholar]
- Perry T. L., Godin D. V., Hansen S. Parkinson's disease: a disorder due to nigral glutathione deficiency? Neurosci Lett. 1982 Dec 13;33(3):305–310. doi: 10.1016/0304-3940(82)90390-1. [DOI] [PubMed] [Google Scholar]
- Sian J., Dexter D. T., Lees A. J., Daniel S., Agid Y., Javoy-Agid F., Jenner P., Marsden C. D. Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol. 1994 Sep;36(3):348–355. doi: 10.1002/ana.410360305. [DOI] [PubMed] [Google Scholar]
- Smith M. A., Richey Harris P. L., Sayre L. M., Beckman J. S., Perry G. Widespread peroxynitrite-mediated damage in Alzheimer's disease. J Neurosci. 1997 Apr 15;17(8):2653–2657. doi: 10.1523/JNEUROSCI.17-08-02653.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spear N., Estévez A. G., Barbeito L., Beckman J. S., Johnson G. V. Nerve growth factor protects PC12 cells against peroxynitrite-induced apoptosis via a mechanism dependent on phosphatidylinositol 3-kinase. J Neurochem. 1997 Jul;69(1):53–59. doi: 10.1046/j.1471-4159.1997.69010053.x. [DOI] [PubMed] [Google Scholar]
- Szabó C. The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia-reperfusion injury. Shock. 1996 Aug;6(2):79–88. doi: 10.1097/00024382-199608000-00001. [DOI] [PubMed] [Google Scholar]
- Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]