Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Dec 15;344(Pt 3):659–665.

Protein specific N-glycosylation of tyrosinase and tyrosinase-related protein-1 in B16 mouse melanoma cells.

G Negroiu 1, N Branza-Nichita 1, A J Petrescu 1, R A Dwek 1, S M Petrescu 1
PMCID: PMC1220687  PMID: 10585852

Abstract

Tyrosinase and tyrosinase-related protein-1 (TRP-1) are two melanogenic enzymes that regulate melanin biosynthesis. Both are glycoproteins and belong to the TRP-1 gene family. They share a significant level of sequence similarity in several regions, including the catalytic domain and the potential N-glycosylation sites. We have recently shown that inhibition of the early steps of N-glycan processing in B16F1 cells dramatically affects tyrosinase activity and melanin synthesis. We present here results on N-glycan processing of TRP-1 and tyrosinase and compare the maturation process and activity of both glycoproteins in the presence of inhibitors of the endoplasmic reticulum stages of N-glycosylation. N-glycan analysis reveals that each of these two glycoproteins contains a mixture of high-mannose and sialylated complex N-glycans. However, in contrast to TRP-1, tyrosinase presents a homogeneous high-mannose glycoform, also. In the presence of alpha-glucosidases inhibitors, the maturation of tyrosinase N-glycans is completely inhibited, whereas TRP-1 is still able to acquire some complex glycans, indicating that endomannosidase acts preferentially on the later glycoprotein. In addition, the dopa-oxidase activity of tyrosinase is totally abolished, whereas for TRP-1 it is only partially affected. The results suggest that despite their structural similarity, tyrosinase is more sensitive than TRP-1 to perturbations of early N-glycan processing, in terms of maturation and catalytical activity.

Full Text

The Full Text of this article is available as a PDF (192.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aroca P., Urabe K., Kobayashi T., Tsukamoto K., Hearing V. J. Melanin biosynthesis patterns following hormonal stimulation. J Biol Chem. 1993 Dec 5;268(34):25650–25655. [PubMed] [Google Scholar]
  2. Boissy R. E., Sakai C., Zhao H., Kobayashi T., Hearing V. J. Human tyrosinase related protein-1 (TRP-1) does not function as a DHICA oxidase activity in contrast to murine TRP-1. Exp Dermatol. 1998 Aug;7(4):198–204. doi: 10.1111/j.1600-0625.1998.tb00324.x. [DOI] [PubMed] [Google Scholar]
  3. Branza-Nichita N., Petrescu A. J., Dwek R. A., Wormald M. R., Platt F. M., Petrescu S. M. Tyrosinase folding and copper loading in vivo: a crucial role for calnexin and alpha-glucosidase II. Biochem Biophys Res Commun. 1999 Aug 11;261(3):720–725. doi: 10.1006/bbrc.1999.1030. [DOI] [PubMed] [Google Scholar]
  4. Dairaku K., Spiro R. G. Phylogenetic survey of endomannosidase indicates late evolutionary appearance of this N-linked oligosaccharide processing enzyme. Glycobiology. 1997 Jun;7(4):579–586. doi: 10.1093/glycob/7.4.579. [DOI] [PubMed] [Google Scholar]
  5. Elbein A. D. Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annu Rev Biochem. 1987;56:497–534. doi: 10.1146/annurev.bi.56.070187.002433. [DOI] [PubMed] [Google Scholar]
  6. Furumura M., Solano F., Matsunaga N., Sakai C., Spritz R. A., Hearing V. J. Metal ligand-binding specificities of the tyrosinase-related proteins. Biochem Biophys Res Commun. 1998 Jan 26;242(3):579–585. doi: 10.1006/bbrc.1997.8007. [DOI] [PubMed] [Google Scholar]
  7. Guile G. R., Rudd P. M., Wing D. R., Prime S. B., Dwek R. A. A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal Biochem. 1996 Sep 5;240(2):210–226. doi: 10.1006/abio.1996.0351. [DOI] [PubMed] [Google Scholar]
  8. Halaban R., Cheng E., Zhang Y., Moellmann G., Hanlon D., Michalak M., Setaluri V., Hebert D. N. Aberrant retention of tyrosinase in the endoplasmic reticulum mediates accelerated degradation of the enzyme and contributes to the dedifferentiated phenotype of amelanotic melanoma cells. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6210–6215. doi: 10.1073/pnas.94.12.6210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hearing V. J., Ekel T. M. Mammalian tyrosinase. A comparison of tyrosine hydroxylation and melanin formation. Biochem J. 1976 Sep 1;157(3):549–557. doi: 10.1042/bj1570549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jimenez-Cervantes C., Garcia-Borron J. C., Valverde P., Solano F., Lozano J. A. Tyrosinase isoenzymes in mammalian melanocytes. 1. Biochemical characterization of two melanosomal tyrosinases from B16 mouse melanoma. Eur J Biochem. 1993 Oct 15;217(2):549–556. doi: 10.1111/j.1432-1033.1993.tb18276.x. [DOI] [PubMed] [Google Scholar]
  11. Jimenez-Cervantes C., Valverde P., García-Borrón J. C., Solano F., Lozano J. A. Improved tyrosinase activity stains in polyacrylamide electrophoresis gels. Pigment Cell Res. 1993 Dec;6(6):394–399. doi: 10.1111/j.1600-0749.1993.tb00621.x. [DOI] [PubMed] [Google Scholar]
  12. Jiménez-Cervantes C., Solano F., Kobayashi T., Urabe K., Hearing V. J., Lozano J. A., García-Borrón J. C. A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1). J Biol Chem. 1994 Jul 8;269(27):17993–18000. [PubMed] [Google Scholar]
  13. Jiménez M., Tsukamoto K., Hearing V. J. Tyrosinases from two different loci are expressed by normal and by transformed melanocytes. J Biol Chem. 1991 Jan 15;266(2):1147–1156. [PubMed] [Google Scholar]
  14. Karaivanova V. K., Luan P., Spiro R. G. Processing of viral envelope glycoprotein by the endomannosidase pathway: evaluation of host cell specificity. Glycobiology. 1998 Jul;8(7):725–730. doi: 10.1093/glycob/8.7.725. [DOI] [PubMed] [Google Scholar]
  15. Kobayashi T., Imokawa G., Bennett D. C., Hearing V. J. Tyrosinase stabilization by Tyrp1 (the brown locus protein). J Biol Chem. 1998 Nov 27;273(48):31801–31805. doi: 10.1074/jbc.273.48.31801. [DOI] [PubMed] [Google Scholar]
  16. Kobayashi T., Vieira W. D., Potterf B., Sakai C., Imokawa G., Hearing V. J. Modulation of melanogenic protein expression during the switch from eu- to pheomelanogenesis. J Cell Sci. 1995 Jun;108(Pt 6):2301–2309. doi: 10.1242/jcs.108.6.2301. [DOI] [PubMed] [Google Scholar]
  17. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  18. Müller G., Ruppert S., Schmid E., Schütz G. Functional analysis of alternatively spliced tyrosinase gene transcripts. EMBO J. 1988 Sep;7(9):2723–2730. doi: 10.1002/j.1460-2075.1988.tb03126.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ohkura T., Yamashita K., Mishima Y., Kobata A. Purification of hamster melanoma tyrosinases and structural studies of their asparagine-linked sugar chains. Arch Biochem Biophys. 1984 Nov 15;235(1):63–77. doi: 10.1016/0003-9861(84)90255-8. [DOI] [PubMed] [Google Scholar]
  20. Petrescu A. J., Butters T. D., Reinkensmeier G., Petrescu S., Platt F. M., Dwek R. A., Wormald M. R. The solution NMR structure of glucosylated N-glycans involved in the early stages of glycoprotein biosynthesis and folding. EMBO J. 1997 Jul 16;16(14):4302–4310. doi: 10.1093/emboj/16.14.4302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Petrescu S. M., Petrescu A. J., Titu H. N., Dwek R. A., Platt F. M. Inhibition of N-glycan processing in B16 melanoma cells results in inactivation of tyrosinase but does not prevent its transport to the melanosome. J Biol Chem. 1997 Jun 20;272(25):15796–15803. doi: 10.1074/jbc.272.25.15796. [DOI] [PubMed] [Google Scholar]
  22. Petrescu S., Branza-Nichita N., Nita-Lazar M., Petrescu A. J., Motas C. Immunoaffinity chromatography on antibodies immobilized on nitrocellulose powder. Anal Biochem. 1995 Aug 10;229(2):299–303. doi: 10.1006/abio.1995.1416. [DOI] [PubMed] [Google Scholar]
  23. Rudd P. M., Dwek R. A. Rapid, sensitive sequencing of oligosaccharides from glycoproteins. Curr Opin Biotechnol. 1997 Aug;8(4):488–497. doi: 10.1016/s0958-1669(97)80073-0. [DOI] [PubMed] [Google Scholar]
  24. Vijayasaradhi S., Xu Y., Bouchard B., Houghton A. N. Intracellular sorting and targeting of melanosomal membrane proteins: identification of signals for sorting of the human brown locus protein, gp75. J Cell Biol. 1995 Aug;130(4):807–820. doi: 10.1083/jcb.130.4.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zapun A., Petrescu S. M., Rudd P. M., Dwek R. A., Thomas D. Y., Bergeron J. J. Conformation-independent binding of monoglucosylated ribonuclease B to calnexin. Cell. 1997 Jan 10;88(1):29–38. doi: 10.1016/s0092-8674(00)81855-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES