Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Mar 15;346(Pt 3):767–776.

Allosteric regulation of neuronal nitric oxide synthase by tetrahydrobiopterin and suppression of auto-damaging superoxide.

P Kotsonis 1, L G Fröhlich 1, Z V Shutenko 1, R Horejsi 1, W Pfleiderer 1, H H Schmidt 1
PMCID: PMC1220911  PMID: 10698705

Abstract

The underlying mechanisms regulating the activity of the family of homodimeric nitric oxide synthases (NOSs) and, in particular, the requirement for (6R)-5,6,7,8-tetrahydro-L-biopterin (H(4)Bip) are not fully understood. Here we have investigated possible allosteric and stabilizing effects of H(4)Bip on neuronal NOS (NOS-I) during the conversion of substrate, L-arginine, into L-citrulline and nitric oxide. Indeed, in kinetic studies dual allosteric interactions between L-arginine and H(4)Bip activated recombinant human NOS-I to increase L-arginine turnover. Consistent with this was the observation that H(4)Bip, but not the pterin-based NOS inhibitor 2-amino-4,6-dioxo-3,4,5,6,8,8a,9,10-octahydrooxazolo[1, 2-f]-pteridine (PHS-32), caused an L-arginine-dependent increase in the haem Soret band, indicating an increase in substrate binding to recombinant human NOS-I. Conversely, L-arginine was observed to increase in a concentration-dependent manner H(4)Bip binding to pig brain NOS-I. Secondly, we investigated the stabilization of NOS quaternary structure by H(4)Bip in relation to uncoupled catalysis. Under catalytic assay conditions and in the absence of H(4)Bip, dimeric recombinant human NOS-I dissociated into inactive monomers. Monomerization was related to the uncoupling of reductive oxygen activation, because it was inhibited by both superoxide dismutase and the inhibitor N(omega)-nitro-L-arginine. Importantly, H(4)Bip was found to react chemically with superoxide (O(2)(-.)) and enzyme-bound H(4)Bip was consumed under O(2)(-.)-generating conditions in the absence of substrate. These results suggest that H(4)Bip allosterically activates NOS-I and stabilizes quaternary structure by a novel mechanism involving the direct interception of auto-damaging O(2)(-.).

Full Text

The Full Text of this article is available as a PDF (192.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abu-Soud H. M., Stuehr D. J. Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10769–10772. doi: 10.1073/pnas.90.22.10769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abu-Soud H. M., Yoho L. L., Stuehr D. J. Calmodulin controls neuronal nitric-oxide synthase by a dual mechanism. Activation of intra- and interdomain electron transfer. J Biol Chem. 1994 Dec 23;269(51):32047–32050. [PubMed] [Google Scholar]
  3. Alderton W. K., Boyhan A., Lowe P. N. Nitroarginine and tetrahydrobiopterin binding to the haem domain of neuronal nitric oxide synthase using a scintillation proximity assay. Biochem J. 1998 May 15;332(Pt 1):195–201. doi: 10.1042/bj3320195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arima T., Kitamura Y., Nishiya T., Kiriyama Y., Taniguchi T., Nomura Y. NG-nitro-L-[3H]arginine binding properties of neuronal nitric oxide synthase in rat brain. Neurochem Int. 1997 Mar;30(3):239–245. doi: 10.1016/s0197-0186(96)00099-x. [DOI] [PubMed] [Google Scholar]
  5. Baek K. J., Thiel B. A., Lucas S., Stuehr D. J. Macrophage nitric oxide synthase subunits. Purification, characterization, and role of prosthetic groups and substrate in regulating their association into a dimeric enzyme. J Biol Chem. 1993 Oct 5;268(28):21120–21129. [PubMed] [Google Scholar]
  6. Bec N., Gorren A. C., Voelker C., Mayer B., Lange R. Reaction of neuronal nitric-oxide synthase with oxygen at low temperature. Evidence for reductive activation of the oxy-ferrous complex by tetrahydrobiopterin. J Biol Chem. 1998 May 29;273(22):13502–13508. doi: 10.1074/jbc.273.22.13502. [DOI] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  8. Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R., Snyder S. H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991 Jun 27;351(6329):714–718. doi: 10.1038/351714a0. [DOI] [PubMed] [Google Scholar]
  9. Bredt D. S., Snyder S. H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A. 1990 Jan;87(2):682–685. doi: 10.1073/pnas.87.2.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bredt D. S., Snyder S. H. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem. 1994;63:175–195. doi: 10.1146/annurev.bi.63.070194.001135. [DOI] [PubMed] [Google Scholar]
  11. Bömmel H. M., Reif A., Fröhlich L. G., Frey A., Hofmann H., Marecak D. M., Groehn V., Kotsonis P., La M., Köster S. Anti-pterins as tools to characterize the function of tetrahydrobiopterin in NO synthase. J Biol Chem. 1998 Dec 11;273(50):33142–33149. doi: 10.1074/jbc.273.50.33142. [DOI] [PubMed] [Google Scholar]
  12. Chabin R. M., McCauley E., Calaycay J. R., Kelly T. M., MacNaul K. L., Wolfe G. C., Hutchinson N. I., Madhusudanaraju S., Schmidt J. A., Kozarich J. W. Active-site structure analysis of recombinant human inducible nitric oxide synthase using imidazole. Biochemistry. 1996 Jul 23;35(29):9567–9575. doi: 10.1021/bi960476o. [DOI] [PubMed] [Google Scholar]
  13. Colquhoun D. Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br J Pharmacol. 1998 Nov;125(5):924–947. doi: 10.1038/sj.bjp.0702164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Crane B. R., Arvai A. S., Ghosh D. K., Wu C., Getzoff E. D., Stuehr D. J., Tainer J. A. Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science. 1998 Mar 27;279(5359):2121–2126. doi: 10.1126/science.279.5359.2121. [DOI] [PubMed] [Google Scholar]
  15. Ghosh D. K., Wu C., Pitters E., Moloney M., Werner E. R., Mayer B., Stuehr D. J. Characterization of the inducible nitric oxide synthase oxygenase domain identifies a 49 amino acid segment required for subunit dimerization and tetrahydrobiopterin interaction. Biochemistry. 1997 Sep 2;36(35):10609–10619. doi: 10.1021/bi9702290. [DOI] [PubMed] [Google Scholar]
  16. Giovanelli J., Campos K. L., Kaufman S. Tetrahydrobiopterin, a cofactor for rat cerebellar nitric oxide synthase, does not function as a reactant in the oxygenation of arginine. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7091–7095. doi: 10.1073/pnas.88.16.7091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gorren A. C., List B. M., Schrammel A., Pitters E., Hemmens B., Werner E. R., Schmidt K., Mayer B. Tetrahydrobiopterin-free neuronal nitric oxide synthase: evidence for two identical highly anticooperative pteridine binding sites. Biochemistry. 1996 Dec 24;35(51):16735–16745. doi: 10.1021/bi961931j. [DOI] [PubMed] [Google Scholar]
  18. Griffith O. W., Stuehr D. J. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol. 1995;57:707–736. doi: 10.1146/annurev.ph.57.030195.003423. [DOI] [PubMed] [Google Scholar]
  19. Heinzel B., John M., Klatt P., Böhme E., Mayer B. Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J. 1992 Feb 1;281(Pt 3):627–630. doi: 10.1042/bj2810627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hellermann G. R., Solomonson L. P. Calmodulin promotes dimerization of the oxygenase domain of human endothelial nitric-oxide synthase. J Biol Chem. 1997 May 2;272(18):12030–12034. doi: 10.1074/jbc.272.18.12030. [DOI] [PubMed] [Google Scholar]
  21. Hofmann H., Schmidt H. H. Thiol dependence of nitric oxide synthase. Biochemistry. 1995 Oct 17;34(41):13443–13452. doi: 10.1021/bi00041a023. [DOI] [PubMed] [Google Scholar]
  22. Jaffrey S. R., Snyder S. H. PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science. 1996 Nov 1;274(5288):774–777. doi: 10.1126/science.274.5288.774. [DOI] [PubMed] [Google Scholar]
  23. Kaufman S. New tetrahydrobiopterin-dependent systems. Annu Rev Nutr. 1993;13:261–286. doi: 10.1146/annurev.nu.13.070193.001401. [DOI] [PubMed] [Google Scholar]
  24. Klatt P., Pfeiffer S., List B. M., Lehner D., Glatter O., Bächinger H. P., Werner E. R., Schmidt K., Mayer B. Characterization of heme-deficient neuronal nitric-oxide synthase reveals a role for heme in subunit dimerization and binding of the amino acid substrate and tetrahydrobiopterin. J Biol Chem. 1996 Mar 29;271(13):7336–7342. doi: 10.1074/jbc.271.13.7336. [DOI] [PubMed] [Google Scholar]
  25. Klatt P., Schmid M., Leopold E., Schmidt K., Werner E. R., Mayer B. The pteridine binding site of brain nitric oxide synthase. Tetrahydrobiopterin binding kinetics, specificity, and allosteric interaction with the substrate domain. J Biol Chem. 1994 May 13;269(19):13861–13866. [PubMed] [Google Scholar]
  26. Klatt P., Schmidt K., Lehner D., Glatter O., Bächinger H. P., Mayer B. Structural analysis of porcine brain nitric oxide synthase reveals a role for tetrahydrobiopterin and L-arginine in the formation of an SDS-resistant dimer. EMBO J. 1995 Aug 1;14(15):3687–3695. doi: 10.1002/j.1460-2075.1995.tb00038.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kotsonis P., Frey A., Fröhlich L. G., Hofmann H., Reif A., Wink D. A., Feelisch M., Schmidt H. H. Autoinhibition of neuronal nitric oxide synthase: distinct effects of reactive nitrogen and oxygen species on enzyme activity. Biochem J. 1999 Jun 15;340(Pt 3):745–752. [PMC free article] [PubMed] [Google Scholar]
  28. Kwon N. S., Nathan C. F., Stuehr D. J. Reduced biopterin as a cofactor in the generation of nitrogen oxides by murine macrophages. J Biol Chem. 1989 Dec 5;264(34):20496–20501. [PubMed] [Google Scholar]
  29. Li H., Raman C. S., Glaser C. B., Blasko E., Young T. A., Parkinson J. F., Whitlow M., Poulos T. L. Crystal structures of zinc-free and -bound heme domain of human inducible nitric-oxide synthase. Implications for dimer stability and comparison with endothelial nitric-oxide synthase. J Biol Chem. 1999 Jul 23;274(30):21276–21284. doi: 10.1074/jbc.274.30.21276. [DOI] [PubMed] [Google Scholar]
  30. List B. M., Klatt P., Werner E. R., Schmidt K., Mayer B. Overexpression of neuronal nitric oxide synthase in insect cells reveals requirement of haem for tetrahydrobiopterin binding. Biochem J. 1996 Apr 1;315(Pt 1):57–63. doi: 10.1042/bj3150057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Liu Q., Gross S. S. Binding sites of nitric oxide synthases. Methods Enzymol. 1996;268:311–324. doi: 10.1016/s0076-6879(96)68033-1. [DOI] [PubMed] [Google Scholar]
  32. Marletta M. A. Nitric oxide synthase structure and mechanism. J Biol Chem. 1993 Jun 15;268(17):12231–12234. [PubMed] [Google Scholar]
  33. Masters B. S., McMillan K., Sheta E. A., Nishimura J. S., Roman L. J., Martasek P. Neuronal nitric oxide synthase, a modular enzyme formed by convergent evolution: structure studies of a cysteine thiolate-liganded heme protein that hydroxylates L-arginine to produce NO. as a cellular signal. FASEB J. 1996 Apr;10(5):552–558. doi: 10.1096/fasebj.10.5.8621055. [DOI] [PubMed] [Google Scholar]
  34. Masters B. S. Nitric oxide synthases: why so complex? Annu Rev Nutr. 1994;14:131–145. doi: 10.1146/annurev.nu.14.070194.001023. [DOI] [PubMed] [Google Scholar]
  35. McMillan K., Bredt D. S., Hirsch D. J., Snyder S. H., Clark J. E., Masters B. S. Cloned, expressed rat cerebellar nitric oxide synthase contains stoichiometric amounts of heme, which binds carbon monoxide. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11141–11145. doi: 10.1073/pnas.89.23.11141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. McMillan K., Masters B. S. Optical difference spectrophotometry as a probe of rat brain nitric oxide synthase heme-substrate interaction. Biochemistry. 1993 Sep 28;32(38):9875–9880. doi: 10.1021/bi00089a001. [DOI] [PubMed] [Google Scholar]
  37. Miller R. T., Martásek P., Raman C. S., Masters B. S. Zinc content of Escherichia coli-expressed constitutive isoforms of nitric-oxide synthase. Enzymatic activity and effect of pterin. J Biol Chem. 1999 May 21;274(21):14537–14540. doi: 10.1074/jbc.274.21.14537. [DOI] [PubMed] [Google Scholar]
  38. Miller R. T., Martásek P., Roman L. J., Nishimura J. S., Masters B. S. Involvement of the reductase domain of neuronal nitric oxide synthase in superoxide anion production. Biochemistry. 1997 Dec 9;36(49):15277–15284. doi: 10.1021/bi972022c. [DOI] [PubMed] [Google Scholar]
  39. Pfeiffer S., Gorren A. C., Pitters E., Schmidt K., Werner E. R., Mayer B. Allosteric modulation of rat brain nitric oxide synthase by the pterin-site enzyme inhibitor 4-aminotetrahydrobiopterin. Biochem J. 1997 Dec 1;328(Pt 2):349–352. doi: 10.1042/bj3280349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pou S., Keaton L., Surichamorn W., Rosen G. M. Mechanism of superoxide generation by neuronal nitric-oxide synthase. J Biol Chem. 1999 Apr 2;274(14):9573–9580. doi: 10.1074/jbc.274.14.9573. [DOI] [PubMed] [Google Scholar]
  41. Pou S., Pou W. S., Bredt D. S., Snyder S. H., Rosen G. M. Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem. 1992 Dec 5;267(34):24173–24176. [PubMed] [Google Scholar]
  42. Presta A., Siddhanta U., Wu C., Sennequier N., Huang L., Abu-Soud H. M., Erzurum S., Stuehr D. J. Comparative functioning of dihydro- and tetrahydropterins in supporting electron transfer, catalysis, and subunit dimerization in inducible nitric oxide synthase. Biochemistry. 1998 Jan 6;37(1):298–310. doi: 10.1021/bi971944c. [DOI] [PubMed] [Google Scholar]
  43. Raman C. S., Li H., Martásek P., Král V., Masters B. S., Poulos T. L. Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell. 1998 Dec 23;95(7):939–950. doi: 10.1016/s0092-8674(00)81718-3. [DOI] [PubMed] [Google Scholar]
  44. Reif A., Fröhlich L. G., Kotsonis P., Frey A., Bömmel H. M., Wink D. A., Pfleiderer W., Schmidt H. H. Tetrahydrobiopterin inhibits monomerization and is consumed during catalysis in neuronal NO synthase. J Biol Chem. 1999 Aug 27;274(35):24921–24929. doi: 10.1074/jbc.274.35.24921. [DOI] [PubMed] [Google Scholar]
  45. Rodríguez-Crespo I., Gerber N. C., Ortiz de Montellano P. R. Endothelial nitric-oxide synthase. Expression in Escherichia coli, spectroscopic characterization, and role of tetrahydrobiopterin in dimer formation. J Biol Chem. 1996 May 10;271(19):11462–11467. doi: 10.1074/jbc.271.19.11462. [DOI] [PubMed] [Google Scholar]
  46. Sahin-Tóth M., Kukor Z., Tóth M. Tetrahydrobiopterin preferentially stimulates activity and promotes subunit aggregation of membrane-bound calcium-dependent nitric oxide synthase in human placenta. Mol Hum Reprod. 1997 Apr;3(4):293–298. doi: 10.1093/molehr/3.4.293. [DOI] [PubMed] [Google Scholar]
  47. Saura M., Pérez-Sala D., Cañada F. J., Lamas S. Role of tetrahydrobiopterin availability in the regulation of nitric-oxide synthase expression in human mesangial cells. J Biol Chem. 1996 Jun 14;271(24):14290–14295. doi: 10.1074/jbc.271.24.14290. [DOI] [PubMed] [Google Scholar]
  48. Schmidt H. H., Pollock J. S., Nakane M., Gorsky L. D., Förstermann U., Murad F. Purification of a soluble isoform of guanylyl cyclase-activating-factor synthase. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):365–369. doi: 10.1073/pnas.88.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Schmidt H. H., Walter U. NO at work. Cell. 1994 Sep 23;78(6):919–925. doi: 10.1016/0092-8674(94)90267-4. [DOI] [PubMed] [Google Scholar]
  50. Tayeh M. A., Marletta M. A. Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor. J Biol Chem. 1989 Nov 25;264(33):19654–19658. [PubMed] [Google Scholar]
  51. Tzeng E., Billiar T. R., Robbins P. D., Loftus M., Stuehr D. J. Expression of human inducible nitric oxide synthase in a tetrahydrobiopterin (H4B)-deficient cell line: H4B promotes assembly of enzyme subunits into an active dimer. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11771–11775. doi: 10.1073/pnas.92.25.11771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Venema R. C., Ju H., Zou R., Ryan J. W., Venema V. J. Subunit interactions of endothelial nitric-oxide synthase. Comparisons to the neuronal and inducible nitric-oxide synthase isoforms. J Biol Chem. 1997 Jan 10;272(2):1276–1282. doi: 10.1074/jbc.272.2.1276. [DOI] [PubMed] [Google Scholar]
  53. Vásquez-Vivar J., Kalyanaraman B., Martásek P., Hogg N., Masters B. S., Karoui H., Tordo P., Pritchard K. A., Jr Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9220–9225. doi: 10.1073/pnas.95.16.9220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Xia Y., Dawson V. L., Dawson T. M., Snyder S. H., Zweier J. L. Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6770–6774. doi: 10.1073/pnas.93.13.6770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Xia Y., Roman L. J., Masters B. S., Zweier J. L. Inducible nitric-oxide synthase generates superoxide from the reductase domain. J Biol Chem. 1998 Aug 28;273(35):22635–22639. doi: 10.1074/jbc.273.35.22635. [DOI] [PubMed] [Google Scholar]
  56. Xia Y., Zweier J. L. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6954–6958. doi: 10.1073/pnas.94.13.6954. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES