Abstract
The human erythrocyte anion exchanger (AE)1 (Band 3) contains a single complex N-linked oligosaccharide that is attached to Asn(642) in the fourth extracellular loop of this polytopic membrane protein, while other isoforms (AE2, AE3 and trout AE1) are N-glycosylated on the preceding extracellular loop. Human AE1 expressed in transfected human embryonic kidney (HEK)-293 or COS-7 cells contained a high-mannose oligosaccharide. The lack of oligosaccharide processing was not due to retention of AE1 in the endoplasmic reticulum since biotinylation assays showed that approx. 30% of the protein was expressed at the cell surface. Moving the N-glycosylation site to the preceding extracellular loop in an AE1 glycosylation mutant (N555) resulted in processing of the oligosaccharide and production of a complex form of AE1. A double N-glycosylation mutant (N555/N642) contained both a high-mannose and a complex oligosaccharide chain. The complex form of the N555 mutant could be biotinylated showing that this form of the glycoprotein was at the cell surface. Pulse-chase experiments showed that the N555 mutant was efficiently converted from a high-mannose to a complex oligosaccharide with a half-time of approx. 4 h, which reflected the time course of trafficking of AE1 from the endoplasmic reticulum to the plasma membrane. The turnover of the complex form of the N555 mutant occurred with a half-life of approx. 15 h. The results show that the oligosaccharide attached to the endogenous site in extracellular loop 4 in human AE1 is not processed in HEK-293 or COS-7 cells, while the oligosaccharide attached to the preceding loop is converted into the complex form.
Full Text
The Full Text of this article is available as a PDF (203.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beckmann R., Smythe J. S., Anstee D. J., Tanner M. J. Functional cell surface expression of band 3, the human red blood cell anion exchange protein (AE1), in K562 erythroleukemia cells: band 3 enhances the cell surface reactivity of Rh antigens. Blood. 1998 Dec 1;92(11):4428–4438. [PubMed] [Google Scholar]
- Braell W. A., Lodish H. F. Biosynthesis of the erythrocyte anion transport protein. J Biol Chem. 1981 Nov 10;256(21):11337–11344. [PubMed] [Google Scholar]
- Casey J. R., Ding Y., Kopito R. R. The role of cysteine residues in the erythrocyte plasma membrane anion exchange protein, AE1. J Biol Chem. 1995 Apr 14;270(15):8521–8527. doi: 10.1074/jbc.270.15.8521. [DOI] [PubMed] [Google Scholar]
- Casey J. R., Pirraglia C. A., Reithmeier R. A. Enzymatic deglycosylation of human Band 3, the anion transport protein of the erythrocyte membrane. Effect on protein structure and transport properties. J Biol Chem. 1992 Jun 15;267(17):11940–11948. [PubMed] [Google Scholar]
- Chui D., Oh-Eda M., Liao Y. F., Panneerselvam K., Lal A., Marek K. W., Freeze H. H., Moremen K. W., Fukuda M. N., Marth J. D. Alpha-mannosidase-II deficiency results in dyserythropoiesis and unveils an alternate pathway in oligosaccharide biosynthesis. Cell. 1997 Jul 11;90(1):157–167. doi: 10.1016/s0092-8674(00)80322-0. [DOI] [PubMed] [Google Scholar]
- Drickamer L. K. Orientation of the band 3 polypeptide from human erythrocyte membranes. Identification of NH2-terminal sequence and site of carbohydrate attachment. J Biol Chem. 1978 Oct 25;253(20):7242–7248. [PubMed] [Google Scholar]
- Faye L., Sturm A., Bollini R., Vitale A., Chrispeels M. J. The position of the oligosaccharide side-chains of phytohemagglutinin and their accessibility to glycosidases determines their subsequent processing in the Golgi. Eur J Biochem. 1986 Aug 1;158(3):655–661. doi: 10.1111/j.1432-1033.1986.tb09803.x. [DOI] [PubMed] [Google Scholar]
- Fukuda M. N. HEMPAS disease: genetic defect of glycosylation. Glycobiology. 1990 Sep;1(1):9–15. doi: 10.1093/glycob/1.1.9. [DOI] [PubMed] [Google Scholar]
- Fukuda M. N. HEMPAS. Hereditary erythroblastic multinuclearity with positive acidified serum lysis test. Biochim Biophys Acta. 1999 Oct 8;1455(2-3):231–239. doi: 10.1016/s0925-4439(99)00070-8. [DOI] [PubMed] [Google Scholar]
- Fukuda M. N., Masri K. A., Dell A., Luzzatto L., Moremen K. W. Incomplete synthesis of N-glycans in congenital dyserythropoietic anemia type II caused by a defect in the gene encoding alpha-mannosidase II. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7443–7447. doi: 10.1073/pnas.87.19.7443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukuda M., Dell A., Oates J. E., Fukuda M. N. Structure of branched lactosaminoglycan, the carbohydrate moiety of band 3 isolated from adult human erythrocytes. J Biol Chem. 1984 Jul 10;259(13):8260–8273. [PubMed] [Google Scholar]
- Ghosh S., Cox K. H., Cox J. V. Chicken erythroid AE1 anion exchangers associate with the cytoskeleton during recycling to the Golgi. Mol Biol Cell. 1999 Feb;10(2):455–469. doi: 10.1091/mbc.10.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gomez S., Morgans C. Interaction between band 3 and ankyrin begins in early compartments of the secretory pathway and is essential for band 3 processing. J Biol Chem. 1993 Sep 15;268(26):19593–19597. [PubMed] [Google Scholar]
- Groves J. D., Tanner M. J. Role of N-glycosylation in the expression of human band 3-mediated anion transport. Mol Membr Biol. 1994 Jan-Mar;11(1):31–38. doi: 10.3109/09687689409161027. [DOI] [PubMed] [Google Scholar]
- Hanspal M., Golan D. E., Smockova Y., Yi S. J., Cho M. R., Liu S. C., Palek J. Temporal synthesis of band 3 oligomers during terminal maturation of mouse erythroblasts. Dimers and tetramers exist in the membrane as preformed stable species. Blood. 1998 Jul 1;92(1):329–338. [PubMed] [Google Scholar]
- Hassoun H., Hanada T., Lutchman M., Sahr K. E., Palek J., Hanspal M., Chishti A. H. Complete deficiency of glycophorin A in red blood cells from mice with targeted inactivation of the band 3 (AE1) gene. Blood. 1998 Mar 15;91(6):2146–2151. [PubMed] [Google Scholar]
- Jennings M. L., Nicknish J. S. Localization of a site of intermolecular cross-linking in human red blood cell band 3 protein. J Biol Chem. 1985 May 10;260(9):5472–5479. [PubMed] [Google Scholar]
- Jennings M. L. Oligomeric structure and the anion transport function of human erythrocyte band 3 protein. J Membr Biol. 1984;80(2):105–117. doi: 10.1007/BF01868768. [DOI] [PubMed] [Google Scholar]
- Kameh H., Landolt-Marticorena C., Charuk J. H., Schachter H., Reithmeier R. A. Structural and functional consequences of an N-glycosylation mutation (HEMPAS) affecting human erythrocyte membrane glycoproteins. Biochem Cell Biol. 1998;76(5):823–835. doi: 10.1139/bcb-76-5-823. [DOI] [PubMed] [Google Scholar]
- Kopito R. R. Biosynthesis and degradation of CFTR. Physiol Rev. 1999 Jan;79(1 Suppl):S167–S173. doi: 10.1152/physrev.1999.79.1.S167. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Landolt-Marticorena C., Charuk J. H., Reithmeier R. A. Two glycoprotein populations of band 3 dimers are present in human erythrocytes. Mol Membr Biol. 1998 Jul-Sep;15(3):153–158. doi: 10.3109/09687689809074527. [DOI] [PubMed] [Google Scholar]
- Lukacs G. L., Mohamed A., Kartner N., Chang X. B., Riordan J. R., Grinstein S. Conformational maturation of CFTR but not its mutant counterpart (delta F508) occurs in the endoplasmic reticulum and requires ATP. EMBO J. 1994 Dec 15;13(24):6076–6086. doi: 10.1002/j.1460-2075.1994.tb06954.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lux S. E., John K. M., Bennett V. Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature. 1990 Mar 1;344(6261):36–42. doi: 10.1038/344036a0. [DOI] [PubMed] [Google Scholar]
- Peters L. L., Shivdasani R. A., Liu S. C., Hanspal M., John K. M., Gonzalez J. M., Brugnara C., Gwynn B., Mohandas N., Alper S. L. Anion exchanger 1 (band 3) is required to prevent erythrocyte membrane surface loss but not to form the membrane skeleton. Cell. 1996 Sep 20;86(6):917–927. doi: 10.1016/s0092-8674(00)80167-1. [DOI] [PubMed] [Google Scholar]
- Popov M., Li J., Reithmeier R. A. Transmembrane folding of the human erythrocyte anion exchanger (AE1, Band 3) determined by scanning and insertional N-glycosylation mutagenesis. Biochem J. 1999 Apr 15;339(Pt 2):269–279. [PMC free article] [PubMed] [Google Scholar]
- Popov M., Reithmeier R. A. Calnexin interaction with N-glycosylation mutants of a polytopic membrane glycoprotein, the human erythrocyte anion exchanger 1 (band 3). J Biol Chem. 1999 Jun 18;274(25):17635–17642. doi: 10.1074/jbc.274.25.17635. [DOI] [PubMed] [Google Scholar]
- Popov M., Tam L. Y., Li J., Reithmeier R. A. Mapping the ends of transmembrane segments in a polytopic membrane protein. Scanning N-glycosylation mutagenesis of extracytosolic loops in the anion exchanger, band 3. J Biol Chem. 1997 Jul 18;272(29):18325–18332. doi: 10.1074/jbc.272.29.18325. [DOI] [PubMed] [Google Scholar]
- Ruetz S., Lindsey A. E., Ward C. L., Kopito R. R. Functional activation of plasma membrane anion exchangers occurs in a pre-Golgi compartment. J Cell Biol. 1993 Apr;121(1):37–48. doi: 10.1083/jcb.121.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steck T. L., Ramos B., Strapazon E. Proteolytic dissection of band 3, the predominant transmembrane polypeptide of the human erythrocyte membrane. Biochemistry. 1976 Mar 9;15(5):1153–1161. doi: 10.1021/bi00650a030. [DOI] [PubMed] [Google Scholar]
- Sterling D., Casey J. R. Transport activity of AE3 chloride/bicarbonate anion-exchange proteins and their regulation by intracellular pH. Biochem J. 1999 Nov 15;344(Pt 1):221–229. [PMC free article] [PubMed] [Google Scholar]
- Tam L. Y., Landolt-Marticorena C., Reithmeier R. A. Glycosylation of multiple extracytosolic loops in Band 3, a model polytopic membrane protein. Biochem J. 1996 Sep 1;318(Pt 2):645–648. doi: 10.1042/bj3180645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang X. B., Fujinaga J., Kopito R., Casey J. R. Topology of the region surrounding Glu681 of human AE1 protein, the erythrocyte anion exchanger. J Biol Chem. 1998 Aug 28;273(35):22545–22553. doi: 10.1074/jbc.273.35.22545. [DOI] [PubMed] [Google Scholar]
- Tanner M. J., Anstee D. J. The membrane change in En(a-) human erythrocytes. Absence of the major erythrocyte sialoglycoprotein. Biochem J. 1976 Feb 1;153(2):271–277. doi: 10.1042/bj1530271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanner M. J., Jenkins R. E., Anstee D. J., Clamp J. R. Abnormal carbohydrate composition of the major penetrating membrane protein of En(a-) human erythrocytes. Biochem J. 1976 Jun 1;155(3):701–703. doi: 10.1042/bj1550701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanner M. J., Martin P. G., High S. The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence. Biochem J. 1988 Dec 15;256(3):703–712. doi: 10.1042/bj2560703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsuji T., Irimura T., Osawa T. The carbohydrate moiety of band 3 glycoprotein of human erythrocyte membranes. Structures of lower molecular weight oligosaccharides. J Biol Chem. 1981 Oct 25;256(20):10497–10502. [PubMed] [Google Scholar]
- Van Dort H. M., Moriyama R., Low P. S. Effect of band 3 subunit equilibrium on the kinetics and affinity of ankyrin binding to erythrocyte membrane vesicles. J Biol Chem. 1998 Jun 12;273(24):14819–14826. doi: 10.1074/jbc.273.24.14819. [DOI] [PubMed] [Google Scholar]
- Ward C. L., Kopito R. R. Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J Biol Chem. 1994 Oct 14;269(41):25710–25718. [PubMed] [Google Scholar]
- Williams D. B., Lennarz W. J. Control of asparagine-linked oligosaccharide chain processing: studies on bovine pancreatic ribonuclease B. An in vitro system for the processing of exogenous glycoproteins. J Biol Chem. 1984 Apr 25;259(8):5105–5114. [PubMed] [Google Scholar]
- Yi S. J., Liu S. C., Derick L. H., Murray J., Barker J. E., Cho M. R., Palek J., Golan D. E. Red cell membranes of ankyrin-deficient nb/nb mice lack band 3 tetramers but contain normal membrane skeletons. Biochemistry. 1997 Aug 5;36(31):9596–9604. doi: 10.1021/bi9704966. [DOI] [PubMed] [Google Scholar]