Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Oct 15;351(Pt 2):495–502.

Inhibition by etomoxir of rat liver carnitine octanoyltransferase is produced through the co-ordinate interaction with two histidine residues.

M Morillas 1, J Clotet 1, B Rubí 1, D Serra 1, J Ariño 1, F G Hegardt 1, G Asins 1
PMCID: PMC1221386  PMID: 11023836

Abstract

Rat peroxisomal carnitine octanoyltransferase (COT), which facilitates the transport of medium-chain fatty acids through the peroxisomal membrane, is irreversibly inhibited by the hypoglycaemia-inducing drug etomoxir. To identify the molecular basis of this inhibition, cDNAs encoding full-length wild-type COT, two different variant point mutants and one variant double mutant from rat peroxisomal COT were expressed in Saccharomyces cerevisiae, an organism devoid of endogenous COT activity. The recombinant mutated enzymes showed activity towards both carnitine and decanoyl-CoA in the same range as the wild type. Whereas the wild-type version expressed in yeast was inhibited by etomoxir in an identical manner to COT from rat liver peroxisomes, the activity of the enzyme containing the double mutation H131A/H340A was completely insensitive to etomoxir. Individual point mutations H131A and H340A also drastically reduced sensitivity to etomoxir. Taken together, these results indicate that the two histidine residues, H131 and H340, are the sites responsible for inhibition by etomoxir and that the full inhibitory properties of the drug will be shown only if both histidines are intact at the same time. Our data demonstrate that both etomoxir and malonyl-CoA inhibit COT by interacting with the same sites.

Full Text

The Full Text of this article is available as a PDF (220.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. A'Bháird N. N., Ramsay R. R. Malonyl-CoA inhibition of peroxisomal carnitine octanoyltransferase. Biochem J. 1992 Sep 1;286(Pt 2):637–640. doi: 10.1042/bj2860637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson R. C. Carnitine palmitoyltransferase: a viable target for the treatment of NIDDM? Curr Pharm Des. 1998 Feb;4(1):1–16. [PubMed] [Google Scholar]
  3. Bieber L. L. Carnitine. Annu Rev Biochem. 1988;57:261–283. doi: 10.1146/annurev.bi.57.070188.001401. [DOI] [PubMed] [Google Scholar]
  4. Bird M. I., Saggerson E. D. Binding of malonyl-CoA to isolated mitochondria. Evidence for high- and low-affinity sites in liver and heart and relationship to inhibition of carnitine palmitoyltransferase activity. Biochem J. 1984 Sep 15;222(3):639–647. doi: 10.1042/bj2220639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Brady P. S., Ramsay R. R., Brady L. J. Regulation of the long-chain carnitine acyltransferases. FASEB J. 1993 Aug;7(11):1039–1044. doi: 10.1096/fasebj.7.11.8370473. [DOI] [PubMed] [Google Scholar]
  7. Britton C. H., Schultz R. A., Zhang B., Esser V., Foster D. W., McGarry J. D. Human liver mitochondrial carnitine palmitoyltransferase I: characterization of its cDNA and chromosomal localization and partial analysis of the gene. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1984–1988. doi: 10.1073/pnas.92.6.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown N. F., Anderson R. C., Caplan S. L., Foster D. W., McGarry J. D. Catalytically important domains of rat carnitine palmitoyltransferase II as determined by site-directed mutagenesis and chemical modification. Evidence for a critical histidine residue. J Biol Chem. 1994 Jul 22;269(29):19157–19162. [PubMed] [Google Scholar]
  9. Choi S. J., Oh D. H., Song C. S., Roy A. K., Chatterjee B. Molecular cloning and sequence analysis of the rat liver carnitine octanoyltransferase cDNA, its natural gene and the gene promoter. Biochim Biophys Acta. 1995 Nov 7;1264(2):215–222. doi: 10.1016/0167-4781(95)00146-8. [DOI] [PubMed] [Google Scholar]
  10. Cook G. A., Mynatt R. L., Kashfi K. Yonetani-Theorell analysis of hepatic carnitine palmitoyltransferase-I inhibition indicates two distinct inhibitory binding sites. J Biol Chem. 1994 Mar 25;269(12):8803–8807. [PubMed] [Google Scholar]
  11. Cronin C. N. cDNA cloning, recombinant expression, and site-directed mutagenesis of bovine liver carnitine octanoyltransferase--Arg505 binds the carboxylate group of carnitine. Eur J Biochem. 1997 Aug 1;247(3):1029–1037. doi: 10.1111/j.1432-1033.1997.01029.x. [DOI] [PubMed] [Google Scholar]
  12. Datta A. K. Efficient amplification using 'megaprimer' by asymmetric polymerase chain reaction. Nucleic Acids Res. 1995 Nov 11;23(21):4530–4531. doi: 10.1093/nar/23.21.4530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Declercq P. E., Falck J. R., Kuwajima M., Tyminski H., Foster D. W., McGarry J. D. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. I. Use of inhibitors. J Biol Chem. 1987 Jul 15;262(20):9812–9821. [PubMed] [Google Scholar]
  14. Derrick J. P., Ramsay R. R. L-carnitine acyltransferase in intact peroxisomes is inhibited by malonyl-CoA. Biochem J. 1989 Sep 15;262(3):801–806. doi: 10.1042/bj2620801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Esser V., Britton C. H., Weis B. C., Foster D. W., McGarry J. D. Cloning, sequencing, and expression of a cDNA encoding rat liver carnitine palmitoyltransferase I. Direct evidence that a single polypeptide is involved in inhibitor interaction and catalytic function. J Biol Chem. 1993 Mar 15;268(8):5817–5822. [PubMed] [Google Scholar]
  16. Esser V., Brown N. F., Cowan A. T., Foster D. W., McGarry J. D. Expression of a cDNA isolated from rat brown adipose tissue and heart identifies the product as the muscle isoform of carnitine palmitoyltransferase I (M-CPT I). M-CPT I is the predominant CPT I isoform expressed in both white (epididymal) and brown adipocytes. J Biol Chem. 1996 Mar 22;271(12):6972–6977. doi: 10.1074/jbc.271.12.6972. [DOI] [PubMed] [Google Scholar]
  17. Ferdinandusse S., Mulders J., IJlst L., Denis S., Dacremont G., Waterham H. R., Wanders R. J. Molecular cloning and expression of human carnitine octanoyltransferase: evidence for its role in the peroxisomal beta-oxidation of branched-chain fatty acids. Biochem Biophys Res Commun. 1999 Sep 16;263(1):213–218. doi: 10.1006/bbrc.1999.1340. [DOI] [PubMed] [Google Scholar]
  18. Finocchiaro G., Taroni F., Rocchi M., Martin A. L., Colombo I., Tarelli G. T., DiDonato S. cDNA cloning, sequence analysis, and chromosomal localization of the gene for human carnitine palmitoyltransferase. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):661–665. doi: 10.1073/pnas.88.2.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hübinger A., Weikert G., Wolf H. P., Gries F. A. The effect of etomoxir on insulin sensitivity in type 2 diabetic patients. Horm Metab Res. 1992 Mar;24(3):115–118. doi: 10.1055/s-2007-1003271. [DOI] [PubMed] [Google Scholar]
  20. Jackson V. N., Cameron J. M., Fraser F., Zammit V. A., Price N. T. Use of six chimeric proteins to investigate the role of intramolecular interactions in determining the kinetics of carnitine palmitoyltransferase I isoforms. J Biol Chem. 2000 Jun 30;275(26):19560–19566. doi: 10.1074/jbc.M002177200. [DOI] [PubMed] [Google Scholar]
  21. Kahler A., Zimmermann M., Langhans W. Suppression of hepatic fatty acid oxidation and food intake in men. Nutrition. 1999 Nov-Dec;15(11-12):819–828. doi: 10.1016/s0899-9007(99)00212-9. [DOI] [PubMed] [Google Scholar]
  22. Kashfi K., Mynatt R. L., Cook G. A. Hepatic carnitine palmitoyltransferase-I has two independent inhibitory binding sites for regulation of fatty acid oxidation. Biochim Biophys Acta. 1994 May 13;1212(2):245–252. doi: 10.1016/0005-2760(94)90259-3. [DOI] [PubMed] [Google Scholar]
  23. Kiorpes T. C., Hoerr D., Ho W., Weaner L. E., Inman M. G., Tutwiler G. F. Identification of 2-tetradecylglycidyl coenzyme A as the active form of methyl 2-tetradecylglycidate (methyl palmoxirate) and its characterization as an irreversible, active site-directed inhibitor of carnitine palmitoyltransferase A in isolated rat liver mitochondria. J Biol Chem. 1984 Aug 10;259(15):9750–9755. [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Lilly K., Chung C., Kerner J., VanRenterghem R., Bieber L. L. Effect of etomoxiryl-CoA on different carnitine acyltransferases. Biochem Pharmacol. 1992 Jan 22;43(2):353–361. doi: 10.1016/0006-2952(92)90298-w. [DOI] [PubMed] [Google Scholar]
  26. Marglin A., Merrifield R. B. Chemical synthesis of peptides and proteins. Annu Rev Biochem. 1970;39:841–866. doi: 10.1146/annurev.bi.39.070170.004205. [DOI] [PubMed] [Google Scholar]
  27. McGarry J. D., Brown N. F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem. 1997 Feb 15;244(1):1–14. doi: 10.1111/j.1432-1033.1997.00001.x. [DOI] [PubMed] [Google Scholar]
  28. Mills S. E., Foster D. W., McGarry J. D. Effects of pH on the interaction of substrates and malonyl-CoA with mitochondrial carnitine palmitoyltransferase I. Biochem J. 1984 Apr 15;219(2):601–608. doi: 10.1042/bj2190601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Morillas M., Clotet J., Rubí B., Serra D., Asins G., Ariño J., Hegardt F. G. Identification of the two histidine residues responsible for the inhibition by malonyl-CoA in peroxisomal carnitine octanoyltransferase from rat liver. FEBS Lett. 2000 Jan 21;466(1):183–186. doi: 10.1016/s0014-5793(99)01788-3. [DOI] [PubMed] [Google Scholar]
  30. Murthy M. S., Pande S. V. Characterization of a solubilized malonyl-CoA-sensitive carnitine palmitoyltransferase from the mitochondrial outer membrane as a protein distinct from the malonyl-CoA-insensitive carnitine palmitoyltransferase of the inner membrane. Biochem J. 1990 Jun 15;268(3):599–604. doi: 10.1042/bj2680599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ratheiser K., Schneeweiss B., Waldhäusl W., Fasching P., Korn A., Nowotny P., Rohac M., Wolf H. P. Inhibition by etomoxir of carnitine palmitoyltransferase I reduces hepatic glucose production and plasma lipids in non-insulin-dependent diabetes mellitus. Metabolism. 1991 Nov;40(11):1185–1190. doi: 10.1016/0026-0495(91)90214-h. [DOI] [PubMed] [Google Scholar]
  32. Schiestl R. H., Gietz R. D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet. 1989 Dec;16(5-6):339–346. doi: 10.1007/BF00340712. [DOI] [PubMed] [Google Scholar]
  33. Selby P. L., Sherratt H. S. Substituted 2-oxiranecarboxylic acids: a new group of candidate hypoglycaemic drugs. Trends Pharmacol Sci. 1989 Dec;10(12):495–500. doi: 10.1016/0165-6147(89)90049-7. [DOI] [PubMed] [Google Scholar]
  34. Sherratt H. S., Gatley S. J., DeGrado T. R., Ng C. K., Holden J. E. Effects of 2[5(4-chlorophenyl)pentyl]oxirane-2-carboxylate on fatty acid and glucose metabolism in perfused rat hearts determined using iodine-125 16-iodohexadecanoate. Biochem Biophys Res Commun. 1983 Dec 28;117(3):653–657. doi: 10.1016/0006-291x(83)91646-7. [DOI] [PubMed] [Google Scholar]
  35. Skorin C., Necochea C., Johow V., Soto U., Grau A. M., Bremer J., Leighton F. Peroxisomal fatty acid oxidation and inhibitors of the mitochondrial carnitine palmitoyltransferase I in isolated rat hepatocytes. Biochem J. 1992 Jan 15;281(Pt 2):561–567. doi: 10.1042/bj2810561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Spurway T. D., Pogson C. I., Sherratt H. S., Agius L. Etomoxir, sodium 2-[6-(4-chlorophenoxy)hexyl] oxirane-2-carboxylate, inhibits triacylglycerol depletion in hepatocytes and lipolysis in adipocytes. FEBS Lett. 1997 Mar 3;404(1):111–114. doi: 10.1016/s0014-5793(97)00103-8. [DOI] [PubMed] [Google Scholar]
  37. Stephens T. W., Cook G. A., Harris R. A. Effect of pH on malonyl-CoA inhibition of carnitine palmitoyltransferase I. Biochem J. 1983 May 15;212(2):521–524. doi: 10.1042/bj2120521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Swanson S. T., Foster D. W., McGarry J. D., Brown N. F. Roles of the N- and C-terminal domains of carnitine palmitoyltransferase I isoforms in malonyl-CoA sensitivity of the enzymes: insights from expression of chimaeric proteins and mutation of conserved histidine residues. Biochem J. 1998 Nov 1;335(Pt 3):513–519. doi: 10.1042/bj3350513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tutwiler G. F., Ryzlak M. T. Inhibition of mitochondrial carnitine palmitoyl transferase by 2-tetradecylglycidic acid (McN-3802) (preliminary communication). Life Sci. 1980 Feb 4;26(5):393–397. doi: 10.1016/0024-3205(80)90156-3. [DOI] [PubMed] [Google Scholar]
  40. Woeltje K. F., Esser V., Weis B. C., Sen A., Cox W. F., McPhaul M. J., Slaughter C. A., Foster D. W., McGarry J. D. Cloning, sequencing, and expression of a cDNA encoding rat liver mitochondrial carnitine palmitoyltransferase II. J Biol Chem. 1990 Jun 25;265(18):10720–10725. [PubMed] [Google Scholar]
  41. Yamazaki N., Shinohara Y., Shima A., Terada H. High expression of a novel carnitine palmitoyltransferase I like protein in rat brown adipose tissue and heart: isolation and characterization of its cDNA clone. FEBS Lett. 1995 Apr 17;363(1-2):41–45. doi: 10.1016/0014-5793(95)00277-g. [DOI] [PubMed] [Google Scholar]
  42. Yamazaki N., Shinohara Y., Shima A., Yamanaka Y., Terada H. Isolation and characterization of cDNA and genomic clones encoding human muscle type carnitine palmitoyltransferase I. Biochim Biophys Acta. 1996 Jun 7;1307(2):157–161. doi: 10.1016/0167-4781(96)00069-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES