Abstract
Fluorogenic peptides encompassing the processing sites of envelope glycoproteins of the infectious influenza A Hong Kong virus (HKV), Ebola virus (EBOV) and respiratory syncytial virus (RSV) were tested for cleavage by soluble recombinants of the proprotein convertases furin, PC5 and PC7. Kinetic studies with these intramolecularly quenched fluorogenic peptides revealed selective cleavages at the physiological dibasic sites. The HKV peptide is cleaved by both furin and PC5 with similar efficacy; in comparison, PC7 cleaves this substrate poorly. In contrast with the basic tetrapeptide insertion within the haemagglutinin sequence of HKV, two other dipeptide insertions revealed a poorer cleavage with a similar rank order of potency. These results demonstrate that the N-terminal RERR insertion to the wild-type avian RKKR downward arrow sequence is functionally significant, and suggest that the approx. 5-fold increase in cleavage efficacy contributes to the high infectivity of the H5N1 virus subtype. With regard to RSV peptide processing, PC7 is twice as effective as PC5 and furin. The EBOV peptide was processed with similar efficiency by the three enzymes. Our observations that all of these cleavages can be effectively inhibited by a plant andrographolide derivative at 250 microM or less might aid in the design of potent convertase inhibitors as alternative antiviral therapies.
Full Text
The Full Text of this article is available as a PDF (167.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrami L., Fivaz M., Decroly E., Seidah N. G., Jean F., Thomas G., Leppla S. H., Buckley J. T., van der Goot F. G. The pore-forming toxin proaerolysin is activated by furin. J Biol Chem. 1998 Dec 4;273(49):32656–32661. doi: 10.1074/jbc.273.49.32656. [DOI] [PubMed] [Google Scholar]
- Basak A., Cooper S., Roberge A. G., Banik U. K., Chrétien M., Seidah N. G. Inhibition of proprotein convertases-1, -7 and furin by diterpines of Andrographis paniculata and their succinoyl esters. Biochem J. 1999 Feb 15;338(Pt 1):107–113. [PMC free article] [PubMed] [Google Scholar]
- Berman Y., Juliano L., Devi L. A. Specificity of the dynorphin-processing endoprotease: comparison with prohormone convertases. J Neurochem. 1999 May;72(5):2120–2126. doi: 10.1046/j.1471-4159.1999.0722120.x. [DOI] [PubMed] [Google Scholar]
- Chang R. S., Ding L., Chen G. Q., Pan Q. C., Zhao Z. L., Smith K. M. Dehydroandrographolide succinic acid monoester as an inhibitor against the human immunodeficiency virus. Proc Soc Exp Biol Med. 1991 May;197(1):59–66. doi: 10.3181/00379727-197-43225. [DOI] [PubMed] [Google Scholar]
- Cheng M., Watson P. H., Paterson J. A., Seidah N., Chrétien M., Shiu R. P. Pro-protein convertase gene expression in human breast cancer. Int J Cancer. 1997 Jun 11;71(6):966–971. doi: 10.1002/(sici)1097-0215(19970611)71:6<966::aid-ijc10>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
- Chrétien M., Mbikay M., Gaspar L., Seidah N. G. Proprotein convertases and the pathophysiology of human diseases: prospective considerations. Proc Assoc Am Physicians. 1995 Apr;107(1):47–66. [PubMed] [Google Scholar]
- Decroly E., Benjannet S., Savaria D., Seidah N. G. Comparative functional role of PC7 and furin in the processing of the HIV envelope glycoprotein gp160. FEBS Lett. 1997 Mar 17;405(1):68–72. doi: 10.1016/s0014-5793(97)00156-7. [DOI] [PubMed] [Google Scholar]
- Decroly E., Wouters S., Di Bello C., Lazure C., Ruysschaert J. M., Seidah N. G. Identification of the paired basic convertases implicated in HIV gp160 processing based on in vitro assays and expression in CD4(+) cell lines. J Biol Chem. 1996 Nov 29;271(48):30442–30450. doi: 10.1074/jbc.271.48.30442. [DOI] [PubMed] [Google Scholar]
- Deshpande K. L., Fried V. A., Ando M., Webster R. G. Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. Proc Natl Acad Sci U S A. 1987 Jan;84(1):36–40. doi: 10.1073/pnas.84.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Domachowske J. B., Rosenberg H. F. Respiratory syncytial virus infection: immune response, immunopathogenesis, and treatment. Clin Microbiol Rev. 1999 Apr;12(2):298–309. doi: 10.1128/cmr.12.2.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gao P., Watanabe S., Ito T., Goto H., Wells K., McGregor M., Cooley A. J., Kawaoka Y. Biological heterogeneity, including systemic replication in mice, of H5N1 influenza A virus isolates from humans in Hong Kong. J Virol. 1999 Apr;73(4):3184–3189. doi: 10.1128/jvi.73.4.3184-3189.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon V. M., Rehemtulla A., Leppla S. H. A role for PACE4 in the proteolytic activation of anthrax toxin protective antigen. Infect Immun. 1997 Aug;65(8):3370–3375. doi: 10.1128/iai.65.8.3370-3375.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hallenberger S., Bosch V., Angliker H., Shaw E., Klenk H. D., Garten W. Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature. 1992 Nov 26;360(6402):358–361. doi: 10.1038/360358a0. [DOI] [PubMed] [Google Scholar]
- Hallenberger S., Moulard M., Sordel M., Klenk H. D., Garten W. The role of eukaryotic subtilisin-like endoproteases for the activation of human immunodeficiency virus glycoproteins in natural host cells. J Virol. 1997 Feb;71(2):1036–1045. doi: 10.1128/jvi.71.2.1036-1045.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heikkinen T., Thint M., Chonmaitree T. Prevalence of various respiratory viruses in the middle ear during acute otitis media. N Engl J Med. 1999 Jan 28;340(4):260–264. doi: 10.1056/NEJM199901283400402. [DOI] [PubMed] [Google Scholar]
- Hussell T., Openshaw P. Recent developments in the biology of respiratory syncytial virus: are vaccines and new treatments just round the corner? Curr Opin Microbiol. 1999 Aug;2(4):410–414. doi: 10.1016/S1369-5274(99)80072-1. [DOI] [PubMed] [Google Scholar]
- Jean F., Basak A., DiMaio J., Seidah N. G., Lazure C. An internally quenched fluorogenic substrate of prohormone convertase 1 and furin leads to a potent prohormone convertase inhibitor. Biochem J. 1995 May 1;307(Pt 3):689–695. doi: 10.1042/bj3070689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jean F., Basak A., Rondeau N., Benjannet S., Hendy G. N., Seidah N. G., Chrétien M., Lazure C. Enzymic characterization of murine and human prohormone convertase-1 (mPC1 and hPC1) expressed in mammalian GH4C1 cells. Biochem J. 1993 Jun 15;292(Pt 3):891–900. doi: 10.1042/bj2920891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jean F., Stella K., Thomas L., Liu G., Xiang Y., Reason A. J., Thomas G. alpha1-Antitrypsin Portland, a bioengineered serpin highly selective for furin: application as an antipathogenic agent. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7293–7298. doi: 10.1073/pnas.95.13.7293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jean F., Thomas L., Molloy S. S., Liu G., Jarvis M. A., Nelson J. A., Thomas G. A protein-based therapeutic for human cytomegalovirus infection. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2864–2869. doi: 10.1073/pnas.050504297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klenk H. D., Garten W. Host cell proteases controlling virus pathogenicity. Trends Microbiol. 1994 Feb;2(2):39–43. doi: 10.1016/0966-842x(94)90123-6. [DOI] [PubMed] [Google Scholar]
- Klenk H. D., Rott R. The molecular biology of influenza virus pathogenicity. Adv Virus Res. 1988;34:247–281. doi: 10.1016/S0065-3527(08)60520-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klimpel K. R., Molloy S. S., Thomas G., Leppla S. H. Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10277–10281. doi: 10.1073/pnas.89.21.10277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lazure C., Gauthier D., Jean F., Boudreault A., Seidah N. G., Bennett H. P., Hendy G. N. In vitro cleavage of internally quenched fluorogenic human proparathyroid hormone and proparathyroid-related peptide substrates by furin. Generation of a potent inhibitor. J Biol Chem. 1998 Apr 10;273(15):8572–8580. doi: 10.1074/jbc.273.15.8572. [DOI] [PubMed] [Google Scholar]
- Matthews D. J., Goodman L. J., Gorman C. M., Wells J. A. A survey of furin substrate specificity using substrate phage display. Protein Sci. 1994 Aug;3(8):1197–1205. doi: 10.1002/pro.5560030805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mbikay M., Sirois F., Yao J., Seidah N. G., Chrétien M. Comparative analysis of expression of the proprotein convertases furin, PACE4, PC1 and PC2 in human lung tumours. Br J Cancer. 1997;75(10):1509–1514. doi: 10.1038/bjc.1997.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meldal M., Breddam K. Anthranilamide and nitrotyrosine as a donor-acceptor pair in internally quenched fluorescent substrates for endopeptidases: multicolumn peptide synthesis of enzyme substrates for subtilisin Carlsberg and pepsin. Anal Biochem. 1991 May 15;195(1):141–147. doi: 10.1016/0003-2697(91)90309-h. [DOI] [PubMed] [Google Scholar]
- Molloy S. S., Anderson E. D., Jean F., Thomas G. Bi-cycling the furin pathway: from TGN localization to pathogen activation and embryogenesis. Trends Cell Biol. 1999 Jan;9(1):28–35. doi: 10.1016/s0962-8924(98)01382-8. [DOI] [PubMed] [Google Scholar]
- Moulard M., Chaloin L., Canarelli S., Mabrouk K., Darbon H., Challoin L. Retroviral envelope glycoprotein processing: structural investigation of the cleavage site. Biochemistry. 1998 Mar 31;37(13):4510–4517. doi: 10.1021/bi972662f. [DOI] [PubMed] [Google Scholar]
- Munzer J. S., Basak A., Zhong M., Mamarbachi A., Hamelin J., Savaria D., Lazure C., Hendy G. N., Benjannet S., Chrétien M. In vitro characterization of the novel proprotein convertase PC7. J Biol Chem. 1997 Aug 8;272(32):19672–19681. doi: 10.1074/jbc.272.32.19672. [DOI] [PubMed] [Google Scholar]
- Nakayama K. Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J. 1997 Nov 1;327(Pt 3):625–635. doi: 10.1042/bj3270625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perdue M. L., García M., Senne D., Fraire M. Virulence-associated sequence duplication at the hemagglutinin cleavage site of avian influenza viruses. Virus Res. 1997 Jun;49(2):173–186. doi: 10.1016/s0168-1702(97)01468-8. [DOI] [PubMed] [Google Scholar]
- Scholtissek C., Bürger H., Kistner O., Shortridge K. F. The nucleoprotein as a possible major factor in determining host specificity of influenza H3N2 viruses. Virology. 1985 Dec;147(2):287–294. doi: 10.1016/0042-6822(85)90131-x. [DOI] [PubMed] [Google Scholar]
- Seidah N. G., Benjannet S., Hamelin J., Mamarbachi A. M., Basak A., Marcinkiewicz J., Mbikay M., Chrétien M., Marcinkiewicz M. The subtilisin/kexin family of precursor convertases. Emphasis on PC1, PC2/7B2, POMC and the novel enzyme SKI-1. Ann N Y Acad Sci. 1999 Oct 20;885:57–74. doi: 10.1111/j.1749-6632.1999.tb08665.x. [DOI] [PubMed] [Google Scholar]
- Seidah N. G., Chrétien M., Day R. The family of subtilisin/kexin like pro-protein and pro-hormone convertases: divergent or shared functions. Biochimie. 1994;76(3-4):197–209. doi: 10.1016/0300-9084(94)90147-3. [DOI] [PubMed] [Google Scholar]
- Seidah N. G., Chrétien M. Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res. 1999 Nov 27;848(1-2):45–62. doi: 10.1016/s0006-8993(99)01909-5. [DOI] [PubMed] [Google Scholar]
- Seidah N. G., Day R., Marcinkiewicz M., Chrétien M. Precursor convertases: an evolutionary ancient, cell-specific, combinatorial mechanism yielding diverse bioactive peptides and proteins. Ann N Y Acad Sci. 1998 May 15;839:9–24. doi: 10.1111/j.1749-6632.1998.tb10727.x. [DOI] [PubMed] [Google Scholar]
- Seidah N. G., Hamelin J., Mamarbachi M., Dong W., Tardos H., Mbikay M., Chretien M., Day R. cDNA structure, tissue distribution, and chromosomal localization of rat PC7, a novel mammalian proprotein convertase closest to yeast kexin-like proteinases. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3388–3393. doi: 10.1073/pnas.93.8.3388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siezen R. J., Creemers J. W., Van de Ven W. J. Homology modelling of the catalytic domain of human furin. A model for the eukaryotic subtilisin-like proprotein convertases. Eur J Biochem. 1994 Jun 1;222(2):255–266. doi: 10.1111/j.1432-1033.1994.tb18864.x. [DOI] [PubMed] [Google Scholar]
- Simoes E. A. Respiratory syncytial virus infection. Lancet. 1999 Sep 4;354(9181):847–852. doi: 10.1016/S0140-6736(99)80040-3. [DOI] [PubMed] [Google Scholar]
- Snacken R., Kendal A. P., Haaheim L. R., Wood J. M. The next influenza pandemic: lessons from Hong Kong, 1997. Emerg Infect Dis. 1999 Mar-Apr;5(2):195–203. doi: 10.3201/eid0502.990202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steiner D. F. The proprotein convertases. Curr Opin Chem Biol. 1998 Feb;2(1):31–39. doi: 10.1016/s1367-5931(98)80033-1. [DOI] [PubMed] [Google Scholar]
- Subbarao K., Klimov A., Katz J., Regnery H., Lim W., Hall H., Perdue M., Swayne D., Bender C., Huang J. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science. 1998 Jan 16;279(5349):393–396. doi: 10.1126/science.279.5349.393. [DOI] [PubMed] [Google Scholar]
- Takada A., Kuboki N., Okazaki K., Ninomiya A., Tanaka H., Ozaki H., Itamura S., Nishimura H., Enami M., Tashiro M. Avirulent Avian influenza virus as a vaccine strain against a potential human pandemic. J Virol. 1999 Oct;73(10):8303–8307. doi: 10.1128/jvi.73.10.8303-8307.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taubenberger J. K., Reid A. H., Krafft A. E., Bijwaard K. E., Fanning T. G. Initial genetic characterization of the 1918 "Spanish" influenza virus. Science. 1997 Mar 21;275(5307):1793–1796. doi: 10.1126/science.275.5307.1793. [DOI] [PubMed] [Google Scholar]
- Touré B. B., Munzer J. S., Basak A., Benjannet S., Rochemont J., Lazure C., Chrétien M., Seidah N. G. Biosynthesis and enzymatic characterization of human SKI-1/S1P and the processing of its inhibitory prosegment. J Biol Chem. 2000 Jan 28;275(4):2349–2358. doi: 10.1074/jbc.275.4.2349. [DOI] [PubMed] [Google Scholar]
- Volchkov V. E., Feldmann H., Volchkova V. A., Klenk H. D. Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5762–5767. doi: 10.1073/pnas.95.10.5762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker J. A., Molloy S. S., Thomas G., Sakaguchi T., Yoshida T., Chambers T. M., Kawaoka Y. Sequence specificity of furin, a proprotein-processing endoprotease, for the hemagglutinin of a virulent avian influenza virus. J Virol. 1994 Feb;68(2):1213–1218. doi: 10.1128/jvi.68.2.1213-1218.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weltzin R., Monath T. P. Intranasal antibody prophylaxis for protection against viral disease. Clin Microbiol Rev. 1999 Jul;12(3):383–393. doi: 10.1128/cmr.12.3.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zarkik S., Decroly E., Wattiez R., Seidah N. G., Burny A., Ruysschaert J. M. Comparative processing of bovine leukemia virus envelope glycoprotein gp72 by subtilisin/kexin-like mammalian convertases. FEBS Lett. 1997 Apr 7;406(1-2):205–210. doi: 10.1016/s0014-5793(97)00275-5. [DOI] [PubMed] [Google Scholar]
- Zhong M., Munzer J. S., Basak A., Benjannet S., Mowla S. J., Decroly E., Chrétien M., Seidah N. G. The prosegments of furin and PC7 as potent inhibitors of proprotein convertases. In vitro and ex vivo assessment of their efficacy and selectivity. J Biol Chem. 1999 Nov 26;274(48):33913–33920. doi: 10.1074/jbc.274.48.33913. [DOI] [PubMed] [Google Scholar]