Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Sep 1;358(Pt 2):399–406. doi: 10.1042/0264-6021:3580399

Kinetic competence of the cADP-ribose-CD38 complex as an intermediate in the CD38/NAD+ glycohydrolase-catalysed reactions: implication for CD38 signalling.

C Cakir-Kiefer 1, H Muller-Steffner 1, N Oppenheimer 1, F Schuber 1
PMCID: PMC1222072  PMID: 11513738

Abstract

CD38/NAD(+) glycohydrolase is a type II transmembrane glycoprotein widely used to study T- and B-cell activation and differentiation. CD38 is endowed with two different activities: it is a signal transduction molecule and an ectoenzyme that converts NAD(+) into ADP-ribose (NAD(+) glycohydrolase activity) and small proportions of cADP-ribose (cADPR; ADP-ribosyl cyclase activity), a calcium-mobilizing metabolite, which, ultimately, can also be hydrolysed (cADPR hydrolase activity). The relationship between these two properties, and strikingly the requirement for signalling in the formation of free or enzyme-complexed cADPR, is still ill-defined. In the present study we wanted to test whether the CD38-cADPR complex is kinetically competent in the conversion of NAD(+) into the reaction product ADP-ribose. In principle, such a complex could be invoked for cross-talk, via conformational changes, with neighbouring partner(s) of CD38 thus triggering the signalling phenomena. Analysis of the kinetic parameters measured for the CD38/NAD(+) glycohydrolase-catalysed hydrolysis of 2'-deoxy-2'-aminoribo-NAD(+) and ADP-cyclo[N1,C1']-2'-deoxy-2'-aminoribose (slowly hydrolysable analogues of NAD(+) and cADPR respectively) ruled out that the CD38-cADPR complex can accumulate under steady-state conditions. This was borne out by simulation of the prevalent kinetic mechanism of CD38, which involve the partitioning of a common E.ADP-ribosyl intermediate in the formation of the enzyme-catalysed reaction products. Using this mechanism, microscopic rate conditions were found which transform a NAD(+) glycohydrolase into an ADP-ribosyl cyclase. Altogether, the present work shows that if the cross-talk with a partner depends on a conformational change of CD38, this is most probably not attributable to the formation of the CD38-cADPR complex. In line with recent results on the conformational change triggered by CD38 ligands [Berthelier, Laboureau, Boulla, Schuber and Deterre (2000) Eur. J. Biochem. 267, 3056-3064], we believe that the Michaelis CD38-NAD(+) complex could play such a role instead.

Full Text

The Full Text of this article is available as a PDF (222.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Augustin A., Muller-Steffner H., Schuber F. Molecular cloning and functional expression of bovine spleen ecto-NAD+ glycohydrolase: structural identity with human CD38. Biochem J. 2000 Jan 1;345(Pt 1):43–52. doi: 10.1042/bj3450043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berthelier V., Laboureau J., Boulla G., Schuber F., Deterre P. Probing ligand-induced conformational changes of human CD38. Eur J Biochem. 2000 May;267(10):3056–3064. doi: 10.1046/j.1432-1033.2000.01329.x. [DOI] [PubMed] [Google Scholar]
  3. Berthelier V., Tixier J. M., Muller-Steffner H., Schuber F., Deterre P. Human CD38 is an authentic NAD(P)+ glycohydrolase. Biochem J. 1998 Mar 15;330(Pt 3):1383–1390. doi: 10.1042/bj3301383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cakir-Kiefer C., Muller-Steffner H., Schuber F. Unifying mechanism for Aplysia ADP-ribosyl cyclase and CD38/NAD(+) glycohydrolases. Biochem J. 2000 Jul 1;349(Pt 1):203–210. doi: 10.1042/0264-6021:3490203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deterre P., Berthelier V., Bauvois B., Dalloul A., Schuber F., Lund F. CD38 in T- and B-cell functions. Chem Immunol. 2000;75:146–168. doi: 10.1159/000058767. [DOI] [PubMed] [Google Scholar]
  6. Graeff R. M., Walseth T. F., Fryxell K., Branton W. D., Lee H. C. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J Biol Chem. 1994 Dec 2;269(48):30260–30267. [PubMed] [Google Scholar]
  7. Guse A. H. Cyclic ADP-ribose. J Mol Med (Berl) 2000;78(1):26–35. doi: 10.1007/s001090000076. [DOI] [PubMed] [Google Scholar]
  8. Guse A. H., da Silva C. P., Berg I., Skapenko A. L., Weber K., Heyer P., Hohenegger M., Ashamu G. A., Schulze-Koops H., Potter B. V. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature. 1999 Mar 4;398(6722):70–73. doi: 10.1038/18024. [DOI] [PubMed] [Google Scholar]
  9. Hellmich M. R., Strumwasser F. Purification and characterization of a molluscan egg-specific NADase, a second-messenger enzyme. Cell Regul. 1991 Mar;2(3):193–202. doi: 10.1091/mbc.2.3.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Higashida H., Egorova A., Higashida C., Zhong Z. G., Yokoyama S., Noda M., Zhang J. S. Sympathetic potentiation of cyclic ADP-ribose formation in rat cardiac myocytes. J Biol Chem. 1999 Nov 19;274(47):33348–33354. doi: 10.1074/jbc.274.47.33348. [DOI] [PubMed] [Google Scholar]
  11. Khoo K. M., Chang C. F. Characterization and localization of CD38 in the vertebrate eye. Brain Res. 1999 Mar 6;821(1):17–25. doi: 10.1016/s0006-8993(98)01347-x. [DOI] [PubMed] [Google Scholar]
  12. Khoo K. M., Han M. K., Park J. B., Chae S. W., Kim U. H., Lee H. C., Bay B. H., Chang C. F. Localization of the cyclic ADP-ribose-dependent calcium signaling pathway in hepatocyte nucleus. J Biol Chem. 2000 Aug 11;275(32):24807–24817. doi: 10.1074/jbc.M908231199. [DOI] [PubMed] [Google Scholar]
  13. Kim H., Jacobson E. L., Jacobson M. K. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science. 1993 Sep 3;261(5126):1330–1333. doi: 10.1126/science.8395705. [DOI] [PubMed] [Google Scholar]
  14. Kuzmic P. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal Biochem. 1996 Jun 1;237(2):260–273. doi: 10.1006/abio.1996.0238. [DOI] [PubMed] [Google Scholar]
  15. Lee H. C., Aarhus R. ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite. Cell Regul. 1991 Mar;2(3):203–209. doi: 10.1091/mbc.2.3.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee H. C. Calcium signaling by cyclic ADP-ribose and NAADP. A decade of exploration. Cell Biochem Biophys. 1998;28(1):1–17. doi: 10.1007/BF02738306. [DOI] [PubMed] [Google Scholar]
  17. Lee H. C., Graeff R. M., Munshi C. B., Walseth T. F., Aarhus R. Large-scale purification of Aplysia ADP-ribosylcyclase and measurement of its activity by fluorimetric assay. Methods Enzymol. 1997;280:331–340. doi: 10.1016/s0076-6879(97)80124-3. [DOI] [PubMed] [Google Scholar]
  18. Li P. L., Zou A. P., Campbell W. B. Regulation of KCa-channel activity by cyclic ADP-ribose and ADP-ribose in coronary arterial smooth muscle. Am J Physiol. 1998 Sep;275(3 Pt 2):H1002–H1010. doi: 10.1152/ajpheart.1998.275.3.H1002. [DOI] [PubMed] [Google Scholar]
  19. Liang M., Chini E. N., Cheng J., Dousa T. P. Synthesis of NAADP and cADPR in mitochondria. Arch Biochem Biophys. 1999 Nov 15;371(2):317–325. doi: 10.1006/abbi.1999.1463. [DOI] [PubMed] [Google Scholar]
  20. Lund F. E., Cockayne D. A., Randall T. D., Solvason N., Schuber F., Howard M. C. CD38: a new paradigm in lymphocyte activation and signal transduction. Immunol Rev. 1998 Feb;161:79–93. doi: 10.1111/j.1600-065x.1998.tb01573.x. [DOI] [PubMed] [Google Scholar]
  21. Lund F. E., Muller-Steffner H. M., Yu N., Stout C. D., Schuber F., Howard M. C. CD38 signaling in B lymphocytes is controlled by its ectodomain but occurs independently of enzymatically generated ADP-ribose or cyclic ADP-ribose. J Immunol. 1999 Mar 1;162(5):2693–2702. [PubMed] [Google Scholar]
  22. Mehta K., Shahid U., Malavasi F. Human CD38, a cell-surface protein with multiple functions. FASEB J. 1996 Oct;10(12):1408–1417. doi: 10.1096/fasebj.10.12.8903511. [DOI] [PubMed] [Google Scholar]
  23. Meyer-Almes F. J., Auer M. Enzyme inhibition assays using fluorescence correlation spectroscopy: a new algorithm for the derivation of kcat/KM and Ki values at substrate concentrations much lower than the Michaelis constant. Biochemistry. 2000 Oct 31;39(43):13261–13268. doi: 10.1021/bi000057y. [DOI] [PubMed] [Google Scholar]
  24. Muller-Steffner H. M., Augustin A., Schuber F. Mechanism of cyclization of pyridine nucleotides by bovine spleen NAD+ glycohydrolase. J Biol Chem. 1996 Sep 27;271(39):23967–23972. doi: 10.1074/jbc.271.39.23967. [DOI] [PubMed] [Google Scholar]
  25. Muller-Steffner H., Muzard M., Oppenheimer N., Schuber F. Mechanistic implications of cyclic ADP-ribose hydrolysis and methanolysis catalyzed by calf spleen NAD+glycohydrolase. Biochem Biophys Res Commun. 1994 Nov 15;204(3):1279–1285. doi: 10.1006/bbrc.1994.2601. [DOI] [PubMed] [Google Scholar]
  26. Muller-Steffner H., Schenherr-Gusse I., Tarnus C., Schuber F. Calf spleen NAD+ glycohydrolase: solubilization, purification, and properties of the intact form of the enzyme. Arch Biochem Biophys. 1993 Jul;304(1):154–162. doi: 10.1006/abbi.1993.1333. [DOI] [PubMed] [Google Scholar]
  27. Northrop D. B. The expression of isotope effects on enzyme-catalyzed reactions. Annu Rev Biochem. 1981;50:103–131. doi: 10.1146/annurev.bi.50.070181.000535. [DOI] [PubMed] [Google Scholar]
  28. Pascal M., Schuber F. The stereochemistry of calf spleen NAD-glycohydrolase-catalyzed NAD methanolysis. FEBS Lett. 1976 Jul 1;66(1):107–109. doi: 10.1016/0014-5793(76)80596-0. [DOI] [PubMed] [Google Scholar]
  29. Rose I. A. The isotope trapping method: desorption rates of productive E.S complexes. Methods Enzymol. 1980;64:47–59. doi: 10.1016/s0076-6879(80)64004-x. [DOI] [PubMed] [Google Scholar]
  30. Sauve A. A., Munshi C., Lee H. C., Schramm V. L. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries. Biochemistry. 1998 Sep 22;37(38):13239–13249. doi: 10.1021/bi981248s. [DOI] [PubMed] [Google Scholar]
  31. Sestini S., Jacomelli G., Pescaglini M., Micheli V., Pompucci G. Enzyme activities leading to NAD synthesis in human lymphocytes. Arch Biochem Biophys. 2000 Jul 15;379(2):277–282. doi: 10.1006/abbi.2000.1888. [DOI] [PubMed] [Google Scholar]
  32. Shubinsky G., Schlesinger M. The CD38 lymphocyte differentiation marker: new insight into its ectoenzymatic activity and its role as a signal transducer. Immunity. 1997 Sep;7(3):315–324. doi: 10.1016/s1074-7613(00)80353-2. [DOI] [PubMed] [Google Scholar]
  33. White T. A., Johnson S., Walseth T. F., Lee H. C., Graeff R. M., Munshi C. B., Prakash Y. S., Sieck G. C., Kannan M. S. Subcellular localization of cyclic ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities in porcine airway smooth muscle. Biochim Biophys Acta. 2000 Oct 20;1498(1):64–71. doi: 10.1016/s0167-4889(00)00077-x. [DOI] [PubMed] [Google Scholar]
  34. Zocchi E., Usai C., Guida L., Franco L., Bruzzone S., Passalacqua M., De Flora A. Ligand-induced internalization of CD38 results in intracellular Ca2+ mobilization: role of NAD+ transport across cell membranes. FASEB J. 1999 Feb;13(2):273–283. doi: 10.1096/fasebj.13.2.273. [DOI] [PubMed] [Google Scholar]
  35. da Silva C. P., Schweitzer K., Heyer P., Malavasi F., Mayr G. W., Guse A. H. Ectocellular CD38-catalyzed synthesis and intracellular Ca2+-signalling activity of cyclic ADP-ribose in T-lymphocytes are not functionally related. FEBS Lett. 1998 Nov 20;439(3):291–296. doi: 10.1016/s0014-5793(98)01396-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES