Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Oct 15;359(Pt 2):451–457. doi: 10.1042/0264-6021:3590451

Pharmacological characterization of the putative cADP-ribose receptor.

J M Thomas 1, R Masgrau 1, G C Churchill 1, A Galione 1
PMCID: PMC1222166  PMID: 11583594

Abstract

cADP-ribose (cADPR), a naturally occurring metabolite of NAD(+), has been shown to be an important regulator of intracellular Ca(2+) release. Considerable evidence suggests that cADPR is the endogenous modulator of the ryanodine receptor (RyR), which mediates Ca(2+)-induced Ca(2+) release (CICR). Indeed, cADPR-mediated Ca(2+) release is subject to functional regulation by other modulators of CICR, including Ca(2+), caffeine and calmodulin. However, the underlying basis behind the effect of such agents on cADPR activity (in particular whether they regulate cADPR binding), as well as the precise nature of the cADPR receptor remains unclear. In the present study, use of (32)P-radiolabelled cADPR has enabled a detailed pharmacological characterization of cADPR-binding sites in sea urchin egg homogenates. We report that cADPR binds specifically to a single class of high affinity receptor. Retainment of binding to membranes after a high-salt wash suggests the involvement of either an integral membrane protein (possibly the RyR itself) or a peripheral protein tightly associated to the membrane. Insensitivity of [(32)P]cADPR binding to either FK506 or rapamycin suggests that this does not concern the FK506-binding protein. Significantly, binding is highly robust, being relatively insensitive to both endogenous and pharmacological modulators of RyR-mediated CICR. In turn, this suggests that such agents modulate cADPR-mediated Ca(2+) release primarily by tuning the 'gain' of the CICR system, upon which cADPR acts, rather than influencing the interaction of cADPR with its target receptor. The exception to this is calmodulin, for which our results indicate an additional role in facilitating cADPR binding.

Full Text

The Full Text of this article is available as a PDF (156.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen G. J., Muir S. R., Sanders D. Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP-ribose. Science. 1995 May 5;268(5211):735–737. doi: 10.1126/science.7732384. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J. Elementary and global aspects of calcium signalling. J Physiol. 1997 Mar 1;499(Pt 2):291–306. doi: 10.1113/jphysiol.1997.sp021927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown E. J., Albers M. W., Shin T. B., Ichikawa K., Keith C. T., Lane W. S., Schreiber S. L. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994 Jun 30;369(6483):756–758. doi: 10.1038/369756a0. [DOI] [PubMed] [Google Scholar]
  4. Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
  5. Clapper D. L., Walseth T. F., Dargie P. J., Lee H. C. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem. 1987 Jul 15;262(20):9561–9568. [PubMed] [Google Scholar]
  6. Corbalan-Garcia S., Teruel J. A., Gomez-Fernandez J. C. Characterization of ruthenium red-binding sites of the Ca(2+)-ATPase from sarcoplasmic reticulum and their interaction with Ca(2+)-binding sites. Biochem J. 1992 Nov 1;287(Pt 3):767–774. doi: 10.1042/bj2870767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dargie P. J., Agre M. C., Lee H. C. Comparison of Ca2+ mobilizing activities of cyclic ADP-ribose and inositol trisphosphate. Cell Regul. 1990 Feb;1(3):279–290. doi: 10.1091/mbc.1.3.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fruen B. R., Bardy J. M., Byrem T. M., Strasburg G. M., Louis C. F. Differential Ca(2+) sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. Am J Physiol Cell Physiol. 2000 Sep;279(3):C724–C733. doi: 10.1152/ajpcell.2000.279.3.C724. [DOI] [PubMed] [Google Scholar]
  9. Galione A., Lee H. C., Busa W. B. Ca(2+)-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science. 1991 Sep 6;253(5024):1143–1146. doi: 10.1126/science.1909457. [DOI] [PubMed] [Google Scholar]
  10. Galione A., McDougall A., Busa W. B., Willmott N., Gillot I., Whitaker M. Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs. Science. 1993 Jul 16;261(5119):348–352. doi: 10.1126/science.8392748. [DOI] [PubMed] [Google Scholar]
  11. Guo X., Becker P. L. Cyclic ADP-ribose-gated Ca2+ release in sea urchin eggs requires an elevated. J Biol Chem. 1997 Jul 4;272(27):16984–16989. doi: 10.1074/jbc.272.27.16984. [DOI] [PubMed] [Google Scholar]
  12. Guse A. H., da Silva C. P., Weber K., Armah C. N., Ashamu G. A., Schulze C., Potter B. V., Mayr G. W., Hilz H. 1-(5-phospho-beta-D-ribosyl)2'-phosphoadenosine 5'-phosphate cyclic anhydride induced Ca2+ release in human T-cell lines. Eur J Biochem. 1997 Apr 15;245(2):411–417. doi: 10.1111/j.1432-1033.1997.t01-1-00411.x. [DOI] [PubMed] [Google Scholar]
  13. Klinger M., Freissmuth M., Nickel P., Stäbler-Schwarzbart M., Kassack M., Suko J., Hohenegger M. Suramin and suramin analogs activate skeletal muscle ryanodine receptor via a calmodulin binding site. Mol Pharmacol. 1999 Mar;55(3):462–472. [PubMed] [Google Scholar]
  14. Lee H. C., Aarhus R. A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J Biol Chem. 1995 Feb 3;270(5):2152–2157. doi: 10.1074/jbc.270.5.2152. [DOI] [PubMed] [Google Scholar]
  15. Lee H. C., Aarhus R., Graeff R. M. Sensitization of calcium-induced calcium release by cyclic ADP-ribose and calmodulin. J Biol Chem. 1995 Apr 21;270(16):9060–9066. doi: 10.1074/jbc.270.16.9060. [DOI] [PubMed] [Google Scholar]
  16. Lee H. C., Aarhus R., Graeff R., Gurnack M. E., Walseth T. F. Cyclic ADP ribose activation of the ryanodine receptor is mediated by calmodulin. Nature. 1994 Jul 28;370(6487):307–309. doi: 10.1038/370307a0. [DOI] [PubMed] [Google Scholar]
  17. Lee H. C. Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers. Annu Rev Pharmacol Toxicol. 2001;41:317–345. doi: 10.1146/annurev.pharmtox.41.1.317. [DOI] [PubMed] [Google Scholar]
  18. Lee H. C. Potentiation of calcium- and caffeine-induced calcium release by cyclic ADP-ribose. J Biol Chem. 1993 Jan 5;268(1):293–299. [PubMed] [Google Scholar]
  19. Lee H. C. Specific binding of cyclic ADP-ribose to calcium-storing microsomes from sea urchin eggs. J Biol Chem. 1991 Feb 5;266(4):2276–2281. [PubMed] [Google Scholar]
  20. Meissner G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol. 1994;56:485–508. doi: 10.1146/annurev.ph.56.030194.002413. [DOI] [PubMed] [Google Scholar]
  21. Noguchi N., Takasawa S., Nata K., Tohgo A., Kato I., Ikehata F., Yonekura H., Okamoto H. Cyclic ADP-ribose binds to FK506-binding protein 12.6 to release Ca2+ from islet microsomes. J Biol Chem. 1997 Feb 7;272(6):3133–3136. doi: 10.1074/jbc.272.6.3133. [DOI] [PubMed] [Google Scholar]
  22. Tripathy A., Xu L., Mann G., Meissner G. Calmodulin activation and inhibition of skeletal muscle Ca2+ release channel (ryanodine receptor). Biophys J. 1995 Jul;69(1):106–119. doi: 10.1016/S0006-3495(95)79880-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tsien R., Pozzan T. Measurement of cytosolic free Ca2+ with quin2. Methods Enzymol. 1989;172:230–262. doi: 10.1016/s0076-6879(89)72017-6. [DOI] [PubMed] [Google Scholar]
  24. Wagenknecht T., Radermacher M., Grassucci R., Berkowitz J., Xin H. B., Fleischer S. Locations of calmodulin and FK506-binding protein on the three-dimensional architecture of the skeletal muscle ryanodine receptor. J Biol Chem. 1997 Dec 19;272(51):32463–32471. doi: 10.1074/jbc.272.51.32463. [DOI] [PubMed] [Google Scholar]
  25. Walseth T. F., Aarhus R., Kerr J. A., Lee H. C. Identification of cyclic ADP-ribose-binding proteins by photoaffinity labeling. J Biol Chem. 1993 Dec 15;268(35):26686–26691. [PubMed] [Google Scholar]
  26. Worley P. F., Baraban J. M., Supattapone S., Wilson V. S., Snyder S. H. Characterization of inositol trisphosphate receptor binding in brain. Regulation by pH and calcium. J Biol Chem. 1987 Sep 5;262(25):12132–12136. [PubMed] [Google Scholar]
  27. Xu Y., Tashjian A. H., Jr Cyclic ADP-ribose-induced calcium release in sea urchin egg homogenates is a cooperative process. Biochemistry. 1995 Mar 7;34(9):2815–2818. doi: 10.1021/bi00009a010. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES