Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 15;364(Pt 1):201–209. doi: 10.1042/bj3640201

Karyopherin alpha2: a control step of glucose-sensitive gene expression in hepatic cells.

Ghislaine Guillemain 1, Maria J Muñoz-Alonso 1, Aurélia Cassany 1, Martine Loizeau 1, Anne-Marie Faussat 1, Anne-Françoise Burnol 1, Armelle Leturque 1
PMCID: PMC1222562  PMID: 11988093

Abstract

Glucose is required for an efficient expression of the glucose transporter GLUT2 and other genes. We have shown previously that the intracytoplasmic loop of GLUT2 can divert a signal, resulting in the stimulation of glucose-sensitive gene transcription. In the present study, by interaction with the GLUT2 loop, we have cloned the rat karyopherin alpha2, a receptor involved in nuclear import. The specificity of the binding was restricted to GLUT2, and not GLUT1 or GLUT4, and to karyopherin alpha2, not alpha1. When rendered irreversible by a cross-linking agent, this transitory interaction was detected in vivo in hepatocytes. A role for karyopherin alpha2 in the transcription of two glucose-sensitive genes was investigated by transfection of native and inactive green fluorescent protein-karyopherin alpha2 in GLUT2-expressing hepatoma cells. The amount of inactive karyopherin alpha2 receptor reduced, in a dose-dependent manner, the GLUT2 and liver pyruvate kinase mRNA levels by competition with endogenous active receptor. In contrast, the overexpression of karyopherin alpha2 did not significantly stimulate GLUT2 and liver pyruvate kinase mRNA accumulation in green fluorescent protein-sorted cells. The present study suggests that, in concert with glucose metabolism, karyopherin alpha2 transmits a signal to the nucleus to regulate glucose-sensitive gene expression. The transitory tethering of karyopherin alpha2 to GLUT2 at the plasma membrane might indicate that the receptor can load the cargo to be imported locally.

Full Text

The Full Text of this article is available as a PDF (242.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antoine B., Lefrançois-Martinez A. M., Le Guillou G., Leturque A., Vandewalle A., Kahn A. Role of the GLUT 2 glucose transporter in the response of the L-type pyruvate kinase gene to glucose in liver-derived cells. J Biol Chem. 1997 Jul 18;272(29):17937–17943. doi: 10.1074/jbc.272.29.17937. [DOI] [PubMed] [Google Scholar]
  2. Antoine B., Levrat F., Vallet V., Berbar T., Cartier N., Dubois N., Briand P., Kahn A. Gene expression in hepatocyte-like lines established by targeted carcinogenesis in transgenic mice. Exp Cell Res. 1992 May;200(1):175–185. doi: 10.1016/s0014-4827(05)80086-2. [DOI] [PubMed] [Google Scholar]
  3. Bell G. I., Kayano T., Buse J. B., Burant C. F., Takeda J., Lin D., Fukumoto H., Seino S. Molecular biology of mammalian glucose transporters. Diabetes Care. 1990 Mar;13(3):198–208. doi: 10.2337/diacare.13.3.198. [DOI] [PubMed] [Google Scholar]
  4. Chen C. A., Okayama H. Calcium phosphate-mediated gene transfer: a highly efficient transfection system for stably transforming cells with plasmid DNA. Biotechniques. 1988 Jul-Aug;6(7):632–638. [PubMed] [Google Scholar]
  5. Cokol M., Nair R., Rost B. Finding nuclear localization signals. EMBO Rep. 2000 Nov;1(5):411–415. doi: 10.1093/embo-reports/kvd092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Conti E., Izaurralde E. Nucleocytoplasmic transport enters the atomic age. Curr Opin Cell Biol. 2001 Jun;13(3):310–319. doi: 10.1016/s0955-0674(00)00213-1. [DOI] [PubMed] [Google Scholar]
  7. Fields S., Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989 Jul 20;340(6230):245–246. doi: 10.1038/340245a0. [DOI] [PubMed] [Google Scholar]
  8. Girard J., Ferré P., Foufelle F. Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu Rev Nutr. 1997;17:325–352. doi: 10.1146/annurev.nutr.17.1.325. [DOI] [PubMed] [Google Scholar]
  9. Guillam M. T., Hümmler E., Schaerer E., Yeh J. I., Birnbaum M. J., Beermann F., Schmidt A., Dériaz N., Thorens B., Wu J. Y. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nat Genet. 1997 Nov;17(3):327–330. doi: 10.1038/ng1197-327. [DOI] [PubMed] [Google Scholar]
  10. Guillemain G., Loizeau M., Pinçon-Raymond M., Girard J., Leturque A. The large intracytoplasmic loop of the glucose transporter GLUT2 is involved in glucose signaling in hepatic cells. J Cell Sci. 2000 Mar;113(Pt 5):841–847. doi: 10.1242/jcs.113.5.841. [DOI] [PubMed] [Google Scholar]
  11. Görlich D., Henklein P., Laskey R. A., Hartmann E. A 41 amino acid motif in importin-alpha confers binding to importin-beta and hence transit into the nucleus. EMBO J. 1996 Apr 15;15(8):1810–1817. [PMC free article] [PubMed] [Google Scholar]
  12. Görlich D., Mattaj I. W. Nucleocytoplasmic transport. Science. 1996 Mar 15;271(5255):1513–1518. doi: 10.1126/science.271.5255.1513. [DOI] [PubMed] [Google Scholar]
  13. Görlich D., Panté N., Kutay U., Aebi U., Bischoff F. R. Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J. 1996 Oct 15;15(20):5584–5594. [PMC free article] [PubMed] [Google Scholar]
  14. Herold A., Truant R., Wiegand H., Cullen B. R. Determination of the functional domain organization of the importin alpha nuclear import factor. J Cell Biol. 1998 Oct 19;143(2):309–318. doi: 10.1083/jcb.143.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnston M. Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. Trends Genet. 1999 Jan;15(1):29–33. doi: 10.1016/s0168-9525(98)01637-0. [DOI] [PubMed] [Google Scholar]
  16. Katagiri H., Asano T., Ishihara H., Tsukuda K., Lin J. L., Inukai K., Kikuchi M., Yazaki Y., Oka Y. Replacement of intracellular C-terminal domain of GLUT1 glucose transporter with that of GLUT2 increases Vmax and Km of transport activity. J Biol Chem. 1992 Nov 5;267(31):22550–22555. [PubMed] [Google Scholar]
  17. Lee W., Jung C. Y. A synthetic peptide corresponding to the GLUT4 C-terminal cytoplasmic domain causes insulin-like glucose transport stimulation and GLUT4 recruitment in rat adipocytes. J Biol Chem. 1997 Aug 22;272(34):21427–21431. doi: 10.1074/jbc.272.34.21427. [DOI] [PubMed] [Google Scholar]
  18. Nagoshi E., Imamoto N., Sato R., Yoneda Y. Nuclear import of sterol regulatory element-binding protein-2, a basic helix-loop-helix-leucine zipper (bHLH-Zip)-containing transcription factor, occurs through the direct interaction of importin beta with HLH-Zip. Mol Biol Cell. 1999 Jul;10(7):2221–2233. doi: 10.1091/mbc.10.7.2221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Newgard C. B., Clark S., BeltrandelRio H., Hohmeier H. E., Quaade C., Normington K. Engineered cell lines for insulin replacement in diabetes: current status and future prospects. Diabetologia. 1997 Jul;40 (Suppl 2):S42–S47. doi: 10.1007/s001250051398. [DOI] [PubMed] [Google Scholar]
  20. Németh K., Salchert K., Putnoky P., Bhalerao R., Koncz-Kálmán Z., Stankovic-Stangeland B., Bakó L., Mathur J., Okrész L., Stabel S. Pleiotropic control of glucose and hormone responses by PRL1, a nuclear WD protein, in Arabidopsis. Genes Dev. 1998 Oct 1;12(19):3059–3073. doi: 10.1101/gad.12.19.3059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ozcan S., Dover J., Rosenwald A. G., Wölfl S., Johnston M. Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12428–12432. doi: 10.1073/pnas.93.22.12428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Postic C., Burcelin R., Rencurel F., Pegorier J. P., Loizeau M., Girard J., Leturque A. Evidence for a transient inhibitory effect of insulin on GLUT2 expression in the liver: studies in vivo and in vitro. Biochem J. 1993 Jul 1;293(Pt 1):119–124. doi: 10.1042/bj2930119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Prieve M. G., Guttridge K. L., Munguia J. E., Waterman M. L. The nuclear localization signal of lymphoid enhancer factor-1 is recognized by two differentially expressed Srp1-nuclear localization sequence receptor proteins. J Biol Chem. 1996 Mar 29;271(13):7654–7658. doi: 10.1074/jbc.271.13.7654. [DOI] [PubMed] [Google Scholar]
  24. Rencurel F., Waeber G., Antoine B., Rocchiccioli F., Maulard P., Girard J., Leturque A. Requirement of glucose metabolism for regulation of glucose transporter type 2 (GLUT2) gene expression in liver. Biochem J. 1996 Mar 15;314(Pt 3):903–909. doi: 10.1042/bj3140903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Riggleman B., Wieschaus E., Schedl P. Molecular analysis of the armadillo locus: uniformly distributed transcripts and a protein with novel internal repeats are associated with a Drosophila segment polarity gene. Genes Dev. 1989 Jan;3(1):96–113. doi: 10.1101/gad.3.1.96. [DOI] [PubMed] [Google Scholar]
  26. Ross D. A., Kadesch T. The notch intracellular domain can function as a coactivator for LEF-1. Mol Cell Biol. 2001 Nov;21(22):7537–7544. doi: 10.1128/MCB.21.22.7537-7544.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Thorens B., Sarkar H. K., Kaback H. R., Lodish H. F. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell. 1988 Oct 21;55(2):281–290. doi: 10.1016/0092-8674(88)90051-7. [DOI] [PubMed] [Google Scholar]
  28. Towle H. C., Kaytor E. N., Shih H. M. Regulation of the expression of lipogenic enzyme genes by carbohydrate. Annu Rev Nutr. 1997;17:405–433. doi: 10.1146/annurev.nutr.17.1.405. [DOI] [PubMed] [Google Scholar]
  29. Tsuji L., Takumi T., Imamoto N., Yoneda Y. Identification of novel homologues of mouse importin alpha, the alpha subunit of the nuclear pore-targeting complex, and their tissue-specific expression. FEBS Lett. 1997 Oct 13;416(1):30–34. doi: 10.1016/s0014-5793(97)01092-2. [DOI] [PubMed] [Google Scholar]
  30. Vojtek A. B., Hollenberg S. M., Cooper J. A. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell. 1993 Jul 16;74(1):205–214. doi: 10.1016/0092-8674(93)90307-c. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES