Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jul 1;365(Pt 1):295–301. doi: 10.1042/BJ20020180

Metabolism of the novel Ca2+-mobilizing messenger nicotinic acid-adenine dinucleotide phosphate via a 2'-specific Ca2+-dependent phosphatase.

Georgina Berridge 1, Rainer Cramer 1, Antony Galione 1, Sandip Patel 1
PMCID: PMC1222647  PMID: 11936953

Abstract

Nicotinic acid-adenine dinucleotide phosphate (NAADP) is a newly described Ca2+-mobilizing nucleotide that appears to target intracellular Ca2+-release channels distinct from those sensitive to inositol trisphosphate or ryanodine/cyclic ADP-ribose. Little, however, is known concerning the regulation of cellular NAADP levels. In the present study, we have characterized the metabolism of NAADP by brain membranes. From HPLC and MS analyses we show that loss of NAADP was associated with the appearance of a major product that is likely to be nicotinic acid-adenine dinucleotide (NAAD), the dephosphorylated form of NAADP. Dephosphorylation of NAADP, but not 3'-NAADP, was dramatically attenuated by Ca2+ chelators and stimulated by Ca2+ over a physiological range in a calmodulin-insensitive manner. In contrast, NADP was metabolized predominantly to ADP-ribose phosphate via glycohydrolase activity, although slower Ca2+-dependent dephosphorylation of both NADP and 2'-AMP could also be demonstrated. This is the first report describing a Ca2+-regulated 2'-specific phosphatase which is probably the major pathway for the inactivation of NAADP in brain. Our data provide a potential feedback mechanism for limiting NAADP-induced Ca2+ release within cells through stimulation of NAADP metabolism by Ca2+ and strongly support a signalling role for this novel nucleotide in the brain.

Full Text

The Full Text of this article is available as a PDF (231.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarhus R., Dickey D. M., Graeff R. M., Gee K. R., Walseth T. F., Lee H. C. Activation and inactivation of Ca2+ release by NAADP+. J Biol Chem. 1996 Apr 12;271(15):8513–8516. doi: 10.1074/jbc.271.15.8513. [DOI] [PubMed] [Google Scholar]
  2. Aarhus R., Graeff R. M., Dickey D. M., Walseth T. F., Lee H. C. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J Biol Chem. 1995 Dec 22;270(51):30327–30333. doi: 10.1074/jbc.270.51.30327. [DOI] [PubMed] [Google Scholar]
  3. Bak J., White P., Timár G., Missiaen L., Genazzani A. A., Galione A. Nicotinic acid adenine dinucleotide phosphate triggers Ca2+ release from brain microsomes. Curr Biol. 1999 Jul 15;9(14):751–754. doi: 10.1016/s0960-9822(99)80335-2. [DOI] [PubMed] [Google Scholar]
  4. Baudet S., Hove-Madsen L., Bers D. M. How to make and use calcium-specific mini- and microelectrodes. Methods Cell Biol. 1994;40:93–113. [PubMed] [Google Scholar]
  5. Berg I., Potter B. V., Mayr G. W., Guse A. H. Nicotinic acid adenine dinucleotide phosphate (NAADP(+)) is an essential regulator of T-lymphocyte Ca(2+)-signaling. J Cell Biol. 2000 Aug 7;150(3):581–588. doi: 10.1083/jcb.150.3.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berridge M. J., Lipp P., Bootman M. D. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000 Oct;1(1):11–21. doi: 10.1038/35036035. [DOI] [PubMed] [Google Scholar]
  7. Bezprozvanny I., Watras J., Ehrlich B. E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 1991 Jun 27;351(6329):751–754. doi: 10.1038/351751a0. [DOI] [PubMed] [Google Scholar]
  8. Biden T. J., Wollheim C. B. Ca2+ regulates the inositol tris/tetrakisphosphate pathway in intact and broken preparations of insulin-secreting RINm5F cells. J Biol Chem. 1986 Sep 15;261(26):11931–11934. [PubMed] [Google Scholar]
  9. Billington R. A., Genazzani A. A. Characterization of NAADP(+) binding in sea urchin eggs. Biochem Biophys Res Commun. 2000 Sep 16;276(1):112–116. doi: 10.1006/bbrc.2000.3444. [DOI] [PubMed] [Google Scholar]
  10. Brailoiu E., Miyamoto M. D., Dun N. J. Nicotinic acid adenine dinucleotide phosphate enhances quantal neurosecretion at the frog neuromuscular junction: possible action on synaptic vesicles in the releasable pool. Mol Pharmacol. 2001 Oct;60(4):718–724. [PubMed] [Google Scholar]
  11. Cancela J. M., Churchill G. C., Galione A. Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature. 1999 Mar 4;398(6722):74–76. doi: 10.1038/18032. [DOI] [PubMed] [Google Scholar]
  12. Cancela J. M. Specific Ca2+ signaling evoked by cholecystokinin and acetylcholine: the roles of NAADP, cADPR, and IP3. Annu Rev Physiol. 2001;63:99–117. doi: 10.1146/annurev.physiol.63.1.99. [DOI] [PubMed] [Google Scholar]
  13. Chini E. N., Beers K. W., Dousa T. P. Nicotinate adenine dinucleotide phosphate (NAADP) triggers a specific calcium release system in sea urchin eggs. J Biol Chem. 1995 Feb 17;270(7):3216–3223. doi: 10.1074/jbc.270.7.3216. [DOI] [PubMed] [Google Scholar]
  14. Chini E. N., Dousa T. P. Enzymatic synthesis and degradation of nicotinate adenine dinucleotide phosphate (NAADP), a Ca(2+)-releasing agonist, in rat tissues. Biochem Biophys Res Commun. 1995 Apr 6;209(1):167–174. doi: 10.1006/bbrc.1995.1485. [DOI] [PubMed] [Google Scholar]
  15. Chini E. N., Dousa T. P. Nicotinate-adenine dinucleotide phosphate-induced Ca(2+)-release does not behave as a Ca(2+)-induced Ca(2+)-release system. Biochem J. 1996 Jun 15;316(Pt 3):709–711. doi: 10.1042/bj3160709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Downes C. P., Mussat M. C., Michell R. H. The inositol trisphosphate phosphomonoesterase of the human erythrocyte membrane. Biochem J. 1982 Apr 1;203(1):169–177. doi: 10.1042/bj2030169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Galione A. Cyclic ADP-ribose, the ADP-ribosyl cyclase pathway and calcium signalling. Mol Cell Endocrinol. 1994 Jan;98(2):125–131. doi: 10.1016/0303-7207(94)90130-9. [DOI] [PubMed] [Google Scholar]
  18. Galione A., Patel S., Churchill G. C. NAADP-induced calcium release in sea urchin eggs. Biol Cell. 2000 Jul;92(3-4):197–204. doi: 10.1016/s0248-4900(00)01070-4. [DOI] [PubMed] [Google Scholar]
  19. Genazzani A. A., Empson R. M., Galione A. Unique inactivation properties of NAADP-sensitive Ca2+ release. J Biol Chem. 1996 May 17;271(20):11599–11602. doi: 10.1074/jbc.271.20.11599. [DOI] [PubMed] [Google Scholar]
  20. Genazzani A. A., Galione A. A Ca2+ release mechanism gated by the novel pyridine nucleotide, NAADP. Trends Pharmacol Sci. 1997 Apr;18(4):108–110. doi: 10.1016/s0165-6147(96)01036-x. [DOI] [PubMed] [Google Scholar]
  21. Genazzani A. A., Galione A. Nicotinic acid-adenine dinucleotide phosphate mobilizes Ca2+ from a thapsigargin-insensitive pool. Biochem J. 1996 May 1;315(Pt 3):721–725. doi: 10.1042/bj3150721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Genazzani A. A., Mezna M., Dickey D. M., Michelangeli F., Walseth T. F., Galione A. Pharmacological properties of the Ca2+-release mechanism sensitive to NAADP in the sea urchin egg. Br J Pharmacol. 1997 Aug;121(7):1489–1495. doi: 10.1038/sj.bjp.0701295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Graeff R. M., Franco L., De Flora A., Lee H. C. Cyclic GMP-dependent and -independent effects on the synthesis of the calcium messengers cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate. J Biol Chem. 1998 Jan 2;273(1):118–125. doi: 10.1074/jbc.273.1.118. [DOI] [PubMed] [Google Scholar]
  24. Iino M. Dynamic regulation of intracellular calcium signals through calcium release channels. Mol Cell Biochem. 1999 Jan;190(1-2):185–190. [PubMed] [Google Scholar]
  25. Lee H. C., Aarhus R. A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J Biol Chem. 1995 Feb 3;270(5):2152–2157. doi: 10.1074/jbc.270.5.2152. [DOI] [PubMed] [Google Scholar]
  26. Lee H. C., Aarhus R. Functional visualization of the separate but interacting calcium stores sensitive to NAADP and cyclic ADP-ribose. J Cell Sci. 2000 Dec;113(Pt 24):4413–4420. doi: 10.1242/jcs.113.24.4413. [DOI] [PubMed] [Google Scholar]
  27. Lee H. C., Aarhus R. Structural determinants of nicotinic acid adenine dinucleotide phosphate important for its calcium-mobilizing activity. J Biol Chem. 1997 Aug 15;272(33):20378–20383. doi: 10.1074/jbc.272.33.20378. [DOI] [PubMed] [Google Scholar]
  28. Lee H. C., Aarhus R. Wide distribution of an enzyme that catalyzes the hydrolysis of cyclic ADP-ribose. Biochim Biophys Acta. 1993 Jun 24;1164(1):68–74. doi: 10.1016/0167-4838(93)90113-6. [DOI] [PubMed] [Google Scholar]
  29. Lee H. C. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol Rev. 1997 Oct;77(4):1133–1164. doi: 10.1152/physrev.1997.77.4.1133. [DOI] [PubMed] [Google Scholar]
  30. Lee H. C. Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers. Annu Rev Pharmacol Toxicol. 2001;41:317–345. doi: 10.1146/annurev.pharmtox.41.1.317. [DOI] [PubMed] [Google Scholar]
  31. Navazio L., Bewell M. A., Siddiqua A., Dickinson G. D., Galione A., Sanders D. Calcium release from the endoplasmic reticulum of higher plants elicited by the NADP metabolite nicotinic acid adenine dinucleotide phosphate. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8693–8698. doi: 10.1073/pnas.140217897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Patel S., Churchill G. C., Galione A. Coordination of Ca2+ signalling by NAADP. Trends Biochem Sci. 2001 Aug;26(8):482–489. doi: 10.1016/s0968-0004(01)01896-5. [DOI] [PubMed] [Google Scholar]
  33. Patel S., Churchill G. C., Galione A. Unique kinetics of nicotinic acid-adenine dinucleotide phosphate (NAADP) binding enhance the sensitivity of NAADP receptors for their ligand. Biochem J. 2000 Dec 15;352(Pt 3):725–729. [PMC free article] [PubMed] [Google Scholar]
  34. Patel S., Churchill G. C., Sharp T., Galione A. Widespread distribution of binding sites for the novel Ca2+-mobilizing messenger, nicotinic acid adenine dinucleotide phosphate, in the brain. J Biol Chem. 2000 Nov 24;275(47):36495–36497. doi: 10.1074/jbc.C000458200. [DOI] [PubMed] [Google Scholar]
  35. Patel S., Joseph S. K., Thomas A. P. Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium. 1999 Mar;25(3):247–264. doi: 10.1054/ceca.1999.0021. [DOI] [PubMed] [Google Scholar]
  36. Petersen O. H., Cancela J. M. New Ca2+-releasing messengers: are they important in the nervous system? Trends Neurosci. 1999 Nov;22(11):488–495. doi: 10.1016/s0166-2236(99)01456-3. [DOI] [PubMed] [Google Scholar]
  37. Sorrentino V. The ryanodine receptor family of intracellular calcium release channels. Adv Pharmacol. 1995;33:67–90. doi: 10.1016/s1054-3589(08)60666-3. [DOI] [PubMed] [Google Scholar]
  38. Taylor C. W. Inositol trisphosphate receptors: Ca2+-modulated intracellular Ca2+ channels. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):19–33. doi: 10.1016/s0005-2760(98)00122-2. [DOI] [PubMed] [Google Scholar]
  39. Thomas A. P., Bird G. S., Hajnóczky G., Robb-Gaspers L. D., Putney J. W., Jr Spatial and temporal aspects of cellular calcium signaling. FASEB J. 1996 Nov;10(13):1505–1517. [PubMed] [Google Scholar]
  40. Wilson H. L., Galione A. Differential regulation of nicotinic acid-adenine dinucleotide phosphate and cADP-ribose production by cAMP and cGMP. Biochem J. 1998 May 1;331(Pt 3):837–843. doi: 10.1042/bj3310837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wu Y., Kuzma J., Maréchal E., Graeff R., Lee H. C., Foster R., Chua N. H. Abscisic acid signaling through cyclic ADP-ribose in plants. Science. 1997 Dec 19;278(5346):2126–2130. doi: 10.1126/science.278.5346.2126. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES