Abstract
Upon stimulation of renal cortical slices with hepatocyte growth factor (HGF), inositol lipid metabolism was studied in basal-lateral plasma membranes (BLM) and brush-border plasma membranes (BBM). Whereas in BLM rapid increases in 1,2-diacylglycerol, PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2) were observed, suggesting that in BLM HGF activates both phospholipase C (PLC) and phosphoinositide 3-kinase (PI3K), in BBM only HGF-induced transient accumulation of PtdIns3P was seen, which was temporarily delayed from signalling events in BLM and could be blocked by the PtdIns-specific-PLC inhibitor ET-18-OCH(3) and the calpain inhibitor calpeptin, suggesting that 3-kinase activation in BBM lies downstream of PLC activation in BLM and is a calpain-mediated event. Moreover, the increase in immunoprecipitable PI3K-C2 beta activity, which is sensitive to wortmannin (10 nM) and shows strong preference for PtdIns over PtdIns4P as a substrate, was observed only in BBM upon stimulation of renal cortical slices with HGF and could be mimicked by the Ca(2+) ionophore A23187 and blocked by the cell-penetrant Ca(2+) chelator BAPTA-AM [1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester)]. On Western blots PI3K-C2 beta revealed a single immunoreactive band of 180 kDa in BLM and BBM, while after stimulation with HGF a gel shift of 18 kDa was noticed only in BBM, suggesting that the observed enzyme activation is achieved by proteolysis. When BBM were subjected to short-term (15 min) exposure to mu-calpain, a similar gel shift together with an increase in PI3K-C2 beta activity was observed, when compared with the BBM harvested after HGF stimulation. The above-mentioned gel shift and increase in PI3K-C2 beta activity could be prevented by the calpain inhibitor calpeptin. The data presented in this report show that in renal cells there is a spatial separation of the inositol lipid signalling system between BLM and BBM, and that HGF causes activation of PLC and PI3K primarily in BLM, which leads to calpain-mediated activation of PI3K-C2 beta in BBM with a concomitant increase in PtdIns3P.
Full Text
The Full Text of this article is available as a PDF (191.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arcaro A., Volinia S., Zvelebil M. J., Stein R., Watton S. J., Layton M. J., Gout I., Ahmadi K., Downward J., Waterfield M. D. Human phosphoinositide 3-kinase C2beta, the role of calcium and the C2 domain in enzyme activity. J Biol Chem. 1998 Dec 4;273(49):33082–33090. doi: 10.1074/jbc.273.49.33082. [DOI] [PubMed] [Google Scholar]
- Arcaro A., Zvelebil M. J., Wallasch C., Ullrich A., Waterfield M. D., Domin J. Class II phosphoinositide 3-kinases are downstream targets of activated polypeptide growth factor receptors. Mol Cell Biol. 2000 Jun;20(11):3817–3830. doi: 10.1128/mcb.20.11.3817-3830.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banfić H., Vuica M., Knotek M., Moslavac S., Divecha N. Inositol lipid signalling occurs in brush-border membranes during initiation of compensatory renal growth in the rat. Biochem J. 1993 Oct 15;295(Pt 2):599–605. doi: 10.1042/bj2950599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bardelli A., Maina F., Gout I., Fry M. J., Waterfield M. D., Comoglio P. M., Ponzetto C. Autophosphorylation promotes complex formation of recombinant hepatocyte growth factor receptor with cytoplasmic effectors containing SH2 domains. Oncogene. 1992 Oct;7(10):1973–1978. [PubMed] [Google Scholar]
- Berggren M. I., Gallegos A., Dressler L. A., Modest E. J., Powis G. Inhibition of the signalling enzyme phosphatidylinositol-3-kinase by antitumor ether lipid analogues. Cancer Res. 1993 Sep 15;53(18):4297–4302. [PubMed] [Google Scholar]
- Biber J., Stieger B., Haase W., Murer H. A high yield preparation for rat kidney brush border membranes. Different behaviour of lysosomal markers. Biochim Biophys Acta. 1981 Oct 2;647(2):169–176. doi: 10.1016/0005-2736(81)90243-1. [DOI] [PubMed] [Google Scholar]
- Bottaro D. P., Rubin J. S., Faletto D. L., Chan A. M., Kmiecik T. E., Vande Woude G. F., Aaronson S. A. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science. 1991 Feb 15;251(4995):802–804. doi: 10.1126/science.1846706. [DOI] [PubMed] [Google Scholar]
- Brinkmann V., Foroutan H., Sachs M., Weidner K. M., Birchmeier W. Hepatocyte growth factor/scatter factor induces a variety of tissue-specific morphogenic programs in epithelial cells. J Cell Biol. 1995 Dec;131(6 Pt 1):1573–1586. doi: 10.1083/jcb.131.6.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown R. A., Domin J., Arcaro A., Waterfield M. D., Shepherd P. R. Insulin activates the alpha isoform of class II phosphoinositide 3-kinase. J Biol Chem. 1999 May 21;274(21):14529–14532. doi: 10.1074/jbc.274.21.14529. [DOI] [PubMed] [Google Scholar]
- Brown R. A., Ho L. K., Weber-Hall S. J., Shipley J. M., Fry M. J. Identification and cDNA cloning of a novel mammalian C2 domain-containing phosphoinositide 3-kinase, HsC2-PI3K. Biochem Biophys Res Commun. 1997 Apr 17;233(2):537–544. doi: 10.1006/bbrc.1997.6495. [DOI] [PubMed] [Google Scholar]
- Cantley L. G. Growth factors and the kidney: regulation of epithelial cell movement and morphogenesis. Am J Physiol. 1996 Dec;271(6 Pt 2):F1103–F1113. doi: 10.1152/ajprenal.1996.271.6.F1103. [DOI] [PubMed] [Google Scholar]
- Derman M. P., Chen J. Y., Spokes K. C., Songyang Z., Cantley L. G. An 11-amino acid sequence from c-met initiates epithelial chemotaxis via phosphatidylinositol 3-kinase and phospholipase C. J Biol Chem. 1996 Feb 23;271(8):4251–4255. doi: 10.1074/jbc.271.8.4251. [DOI] [PubMed] [Google Scholar]
- Divecha N., Banfić H., Irvine R. F. The polyphosphoinositide cycle exists in the nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-I) in the plasma membrane, and stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of protein kinase C to the nucleus. EMBO J. 1991 Nov;10(11):3207–3214. doi: 10.1002/j.1460-2075.1991.tb04883.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Domin J., Gaidarov I., Smith M. E., Keen J. H., Waterfield M. D. The class II phosphoinositide 3-kinase PI3K-C2alpha is concentrated in the trans-Golgi network and present in clathrin-coated vesicles. J Biol Chem. 2000 Apr 21;275(16):11943–11950. doi: 10.1074/jbc.275.16.11943. [DOI] [PubMed] [Google Scholar]
- Ellson C. D., Gobert-Gosse S., Anderson K. E., Davidson K., Erdjument-Bromage H., Tempst P., Thuring J. W., Cooper M. A., Lim Z. Y., Holmes A. B. PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40(phox). Nat Cell Biol. 2001 Jul;3(7):679–682. doi: 10.1038/35083076. [DOI] [PubMed] [Google Scholar]
- Exton J. H. Signaling through phosphatidylcholine breakdown. J Biol Chem. 1990 Jan 5;265(1):1–4. [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Gesek F. A., Schoolwerth A. C. Hormonal interactions with the proximal Na(+)-H+ exchanger. Am J Physiol. 1990 Mar;258(3 Pt 2):F514–F521. doi: 10.1152/ajprenal.1990.258.3.F514. [DOI] [PubMed] [Google Scholar]
- Kanai F., Liu H., Field S. J., Akbary H., Matsuo T., Brown G. E., Cantley L. C., Yaffe M. B. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nat Cell Biol. 2001 Jul;3(7):675–678. doi: 10.1038/35083070. [DOI] [PubMed] [Google Scholar]
- Knotek M., Jaksić O., Selmani R., Skorić B., Banfić H. Different endothelin receptor subtypes are involved in phospholipid signalling in the proximal tubule of rat kidney. Pflugers Arch. 1996 Jun;432(2):165–173. doi: 10.1007/s004240050120. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Matsumoto K., Nakamura T. Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney Int. 2001 Jun;59(6):2023–2038. doi: 10.1046/j.1523-1755.2001.00717.x. [DOI] [PubMed] [Google Scholar]
- Misawa H., Ohtsubo M., Copeland N. G., Gilbert D. J., Jenkins N. A., Yoshimura A. Cloning and characterization of a novel class II phosphoinositide 3-kinase containing C2 domain. Biochem Biophys Res Commun. 1998 Mar 17;244(2):531–539. doi: 10.1006/bbrc.1998.8294. [DOI] [PubMed] [Google Scholar]
- Nagaike M., Hirao S., Tajima H., Noji S., Taniguchi S., Matsumoto K., Nakamura T. Renotropic functions of hepatocyte growth factor in renal regeneration after unilateral nephrectomy. J Biol Chem. 1991 Dec 5;266(34):22781–22784. [PubMed] [Google Scholar]
- Naldini L., Vigna E., Narsimhan R. P., Gaudino G., Zarnegar R., Michalopoulos G. K., Comoglio P. M. Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene. 1991 Apr;6(4):501–504. [PubMed] [Google Scholar]
- Ono F., Nakagawa T., Saito S., Owada Y., Sakagami H., Goto K., Suzuki M., Matsuno S., Kondo H. A novel class II phosphoinositide 3-kinase predominantly expressed in the liver and its enhanced expression during liver regeneration. J Biol Chem. 1998 Mar 27;273(13):7731–7736. doi: 10.1074/jbc.273.13.7731. [DOI] [PubMed] [Google Scholar]
- Ponzetto C., Bardelli A., Zhen Z., Maina F., dalla Zonca P., Giordano S., Graziani A., Panayotou G., Comoglio P. M. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell. 1994 Apr 22;77(2):261–271. doi: 10.1016/0092-8674(94)90318-2. [DOI] [PubMed] [Google Scholar]
- Powis G., Seewald M. J., Gratas C., Melder D., Riebow J., Modest E. J. Selective inhibition of phosphatidylinositol phospholipase C by cytotoxic ether lipid analogues. Cancer Res. 1992 May 15;52(10):2835–2840. [PubMed] [Google Scholar]
- Rameh L. E., Cantley L. C. The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem. 1999 Mar 26;274(13):8347–8350. doi: 10.1074/jbc.274.13.8347. [DOI] [PubMed] [Google Scholar]
- Rizo J., Südhof T. C. C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem. 1998 Jun 26;273(26):15879–15882. doi: 10.1074/jbc.273.26.15879. [DOI] [PubMed] [Google Scholar]
- Royal I., Park M. Hepatocyte growth factor-induced scatter of Madin-Darby canine kidney cells requires phosphatidylinositol 3-kinase. J Biol Chem. 1995 Nov 17;270(46):27780–27787. doi: 10.1074/jbc.270.46.27780. [DOI] [PubMed] [Google Scholar]
- Scalera V., Huang Y. K., Hildmann B., Murer H. A simple isolation method for basal-lateral plasma membranes from rat kidney cortex. Membr Biochem. 1981;4(1):49–61. doi: 10.3109/09687688109065422. [DOI] [PubMed] [Google Scholar]
- Schelling J. R., Hanson A. S., Marzec R., Linas S. L. Cytoskeleton-dependent endocytosis is required for apical type 1 angiotensin II receptor-mediated phospholipase C activation in cultured rat proximal tubule cells. J Clin Invest. 1992 Dec;90(6):2472–2480. doi: 10.1172/JCI116139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simonsen A., Stenmark H. PX domains: attracted by phosphoinositides. Nat Cell Biol. 2001 Aug;3(8):E179–E182. doi: 10.1038/35087112. [DOI] [PubMed] [Google Scholar]
- Sindić A., Aleksandrova A., Fields A. P., Volinia S., Banfić H. Presence and activation of nuclear phosphoinositide 3-kinase C2beta during compensatory liver growth. J Biol Chem. 2001 Feb 13;276(21):17754–17761. doi: 10.1074/jbc.M006533200. [DOI] [PubMed] [Google Scholar]
- Somogyi L., Lasić Z., Vukicević S., Banfić H. Collagen type IV stimulates an increase in intracellular Ca2+ in pancreatic acinar cells via activation of phospholipase C. Biochem J. 1994 May 1;299(Pt 3):603–611. doi: 10.1042/bj2990603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sorimachi H., Ishiura S., Suzuki K. Structure and physiological function of calpains. Biochem J. 1997 Dec 15;328(Pt 3):721–732. doi: 10.1042/bj3280721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner S. J., Domin J., Waterfield M. D., Ward S. G., Westwick J. The CC chemokine monocyte chemotactic peptide-1 activates both the class I p85/p110 phosphatidylinositol 3-kinase and the class II PI3K-C2alpha. J Biol Chem. 1998 Oct 2;273(40):25987–25995. doi: 10.1074/jbc.273.40.25987. [DOI] [PubMed] [Google Scholar]
- Vanhaesebroeck B., Waterfield M. D. Signaling by distinct classes of phosphoinositide 3-kinases. Exp Cell Res. 1999 Nov 25;253(1):239–254. doi: 10.1006/excr.1999.4701. [DOI] [PubMed] [Google Scholar]
- Wheeler M., Domin J. Recruitment of the class II phosphoinositide 3-kinase C2beta to the epidermal growth factor receptor: role of Grb2. Mol Cell Biol. 2001 Oct;21(19):6660–6667. doi: 10.1128/MCB.21.19.6660-6667.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang J., Banfić H., Straforini F., Tosi L., Volinia S., Rittenhouse S. E. A type II phosphoinositide 3-kinase is stimulated via activated integrin in platelets. A source of phosphatidylinositol 3-phosphate. J Biol Chem. 1998 Jun 5;273(23):14081–14084. doi: 10.1074/jbc.273.23.14081. [DOI] [PubMed] [Google Scholar]