Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Feb 1;369(Pt 3):447–452. doi: 10.1042/BJ20021684

Role of superoxide dismutase in survival of Leishmania within the macrophage.

Sanjay Ghosh 1, Srikanta Goswami 1, Samit Adhya 1
PMCID: PMC1223130  PMID: 12459037

Abstract

Intracellular parasitic protozoans of the genus Leishmania depend for their survival on the elaboration of enzymic and other mechanisms for evading toxic free-radical damage inflicted by their phagocytic macrophage host. One such mechanism may involve superoxide dismutase (SOD), which detoxifies reactive superoxide radicals produced by activated macrophages, but the role of this enzyme in parasite survival has not yet been demonstrated. We have cloned a SOD gene from L. tropica and generated SOD-deficient parasites by expressing the corresponding antisense RNA from an episomal vector. Such parasites have enhanced sensitivity to menadione and hydrogen peroxide in axenic culture, and a markedly reduced survival in mouse macrophages. These results indicate that SOD is a major determinant of intracellular survival of Leishmania.

Full Text

The Full Text of this article is available as a PDF (273.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr S. D., Gedamu L. Cloning and characterization of three differentially expressed peroxidoxin genes from Leishmania chagasi. Evidence for an enzymatic detoxification of hydroxyl radicals. J Biol Chem. 2001 Jul 3;276(36):34279–34287. doi: 10.1074/jbc.M104406200. [DOI] [PubMed] [Google Scholar]
  2. Beaman L., Beaman B. L. The role of oxygen and its derivatives in microbial pathogenesis and host defense. Annu Rev Microbiol. 1984;38:27–48. doi: 10.1146/annurev.mi.38.100184.000331. [DOI] [PubMed] [Google Scholar]
  3. Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
  4. Bhaumik M., Das S., Adhya S. Evidence for translational control of beta-tubulin synthesis during differentiation of Leishmania donovani. Parasitology. 1991 Oct;103(Pt 2):197–205. doi: 10.1017/s0031182000059485. [DOI] [PubMed] [Google Scholar]
  5. Heinzen R. A., Frazier M. E., Mallavia L. P. Coxiella burnetii superoxide dismutase gene: cloning, sequencing, and expression in Escherichia coli. Infect Immun. 1992 Sep;60(9):3814–3823. doi: 10.1128/iai.60.9.3814-3823.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kapler G. M., Coburn C. M., Beverley S. M. Stable transfection of the human parasite Leishmania major delineates a 30-kilobase region sufficient for extrachromosomal replication and expression. Mol Cell Biol. 1990 Mar;10(3):1084–1094. doi: 10.1128/mcb.10.3.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Levick M. P., Tetaud E., Fairlamb A. H., Blackwell J. M. Identification and characterisation of a functional peroxidoxin from Leishmania major. Mol Biochem Parasitol. 1998 Oct 30;96(1-2):125–137. doi: 10.1016/s0166-6851(98)00122-4. [DOI] [PubMed] [Google Scholar]
  8. Mahapatra S., Ghosh T., Adhya S. Import of small RNAs into Leishmania mitochondria in vitro. Nucleic Acids Res. 1994 Aug 25;22(16):3381–3386. doi: 10.1093/nar/22.16.3381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Meshnick S. R., Eaton J. W. Leishmanial superoxide dismutase: a possible target for chemotherapy. Biochem Biophys Res Commun. 1981 Oct 15;102(3):970–976. doi: 10.1016/0006-291x(81)91633-8. [DOI] [PubMed] [Google Scholar]
  10. Paramchuk W. J., Ismail S. O., Bhatia A., Gedamu L. Cloning, characterization and overexpression of two iron superoxide dismutase cDNAs from Leishmania chagasi: role in pathogenesis. Mol Biochem Parasitol. 1997 Dec 1;90(1):203–221. doi: 10.1016/s0166-6851(97)00141-2. [DOI] [PubMed] [Google Scholar]
  11. Parker M. W., Blake C. C. Iron- and manganese-containing superoxide dismutases can be distinguished by analysis of their primary structures. FEBS Lett. 1988 Mar 14;229(2):377–382. doi: 10.1016/0014-5793(88)81160-8. [DOI] [PubMed] [Google Scholar]
  12. Shiloh M. U., MacMicking J. D., Nicholson S., Brause J. E., Potter S., Marino M., Fang F., Dinauer M., Nathan C. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity. 1999 Jan;10(1):29–38. doi: 10.1016/s1074-7613(00)80004-7. [DOI] [PubMed] [Google Scholar]
  13. Wilson M. E., Andersen K. A., Britigan B. E. Response of Leishmania chagasi promastigotes to oxidant stress. Infect Immun. 1994 Nov;62(11):5133–5141. doi: 10.1128/iai.62.11.5133-5141.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES