Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 1;371(Pt 3):743–752. doi: 10.1042/BJ20021522

Thioredoxin peroxidases can foster cytoprotection or cell death in response to different stressors: over- and under-expression of thioredoxin peroxidase in Drosophila cells.

Svetlana N Radyuk 1, Rajindar S Sohal 1, William C Orr 1
PMCID: PMC1223337  PMID: 12556226

Abstract

Recently, we identified a set of five genes constituting the peroxiredoxin gene family in Drosophila melanogaster [Radyuk, Klichko, Spinola, Sohal and Orr (2001) Free Radical Biol. Med. 31, 1090-1100]. This set includes two abundant thioredoxin peroxidase (TPx) species, namely Drosophila peroxiredoxin DPx-4783, a cytosolic TPx and DPx-5037, a mitochondrial TPx. Overexpression of either one of them in Drosophila S2 cells conferred increased resistance to toxicity induced by hydrogen peroxide, paraquat or cadmium. To understand further the functional roles of these enzymes in vivo, we report in the present study the effects of decreased expression, using RNA interference, on the response of S2 cells to different stressors. When either of the TPxs was blocked, cells became relatively more susceptible to oxidative stress caused by exposure to hydrogen peroxide or paraquat, but were unaffected when challenged with copper and heat stress. In contrast, TPx overexpressing cells were more susceptible to copper and heat stress when compared with control cells and exhibited DNA fragmentation. Furthermore, when cells were supplemented with N -acetyl-L-cysteine together with copper, there was a clear negative effect on cell survival, which was exacerbated by TPx overexpression. Manipulations in the levels of TPxs demonstrated that, under different stress conditions, these enzymes might have both beneficial and detrimental effects on Drosophila cell viability.

Full Text

The Full Text of this article is available as a PDF (349.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almazan G., Liu H. N., Khorchid A., Sundararajan S., Martinez-Bermudez A. K., Chemtob S. Exposure of developing oligodendrocytes to cadmium causes HSP72 induction, free radical generation, reduction in glutathione levels, and cell death. Free Radic Biol Med. 2000 Nov 1;29(9):858–869. doi: 10.1016/s0891-5849(00)00384-1. [DOI] [PubMed] [Google Scholar]
  2. Arends M. J., Morris R. G., Wyllie A. H. Apoptosis. The role of the endonuclease. Am J Pathol. 1990 Mar;136(3):593–608. [PMC free article] [PubMed] [Google Scholar]
  3. Bessede G., Miguet C., Gambert P., Neel D., Lizard G. Efficiency of homocysteine plus copper in inducing apoptosis is inversely proportional to gamma-glutamyl transpeptidase activity. FASEB J. 2001 Sep;15(11):1927–1940. doi: 10.1096/fj.00-0848com. [DOI] [PubMed] [Google Scholar]
  4. Bryk R., Griffin P., Nathan C. Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature. 2000 Sep 14;407(6801):211–215. doi: 10.1038/35025109. [DOI] [PubMed] [Google Scholar]
  5. Butterfield L. H., Merino A., Golub S. H., Shau H. From cytoprotection to tumor suppression: the multifactorial role of peroxiredoxins. Antioxid Redox Signal. 1999 Winter;1(4):385–402. doi: 10.1089/ars.1999.1.4-385. [DOI] [PubMed] [Google Scholar]
  6. Candas M., Sohal R. S., Radyuk S. N., Klichko V. I., Orr W. C. Molecular organization of the glutathione reductase gene in Drosophila melanogaster. Arch Biochem Biophys. 1997 Mar 15;339(2):323–334. doi: 10.1006/abbi.1996.9872. [DOI] [PubMed] [Google Scholar]
  7. Caplen N. J., Fleenor J., Fire A., Morgan R. A. dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene. 2000 Jul 11;252(1-2):95–105. doi: 10.1016/s0378-1119(00)00224-9. [DOI] [PubMed] [Google Scholar]
  8. Chrestensen C. A., Starke D. W., Mieyal J. J. Acute cadmium exposure inactivates thioltransferase (Glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. J Biol Chem. 2000 Aug 25;275(34):26556–26565. doi: 10.1074/jbc.M004097200. [DOI] [PubMed] [Google Scholar]
  9. Clemens J. C., Worby C. A., Simonson-Leff N., Muda M., Maehama T., Hemmings B. A., Dixon J. E. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6499–6503. doi: 10.1073/pnas.110149597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davidson J. F., Whyte B., Bissinger P. H., Schiestl R. H. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5116–5121. doi: 10.1073/pnas.93.10.5116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Demasi A. P., Pereira G. A., Netto L. E. Cytosolic thioredoxin peroxidase I is essential for the antioxidant defense of yeast with dysfunctional mitochondria. FEBS Lett. 2001 Dec 14;509(3):430–434. doi: 10.1016/s0014-5793(01)03215-x. [DOI] [PubMed] [Google Scholar]
  12. Freedman J. H., Ciriolo M. R., Peisach J. The role of glutathione in copper metabolism and toxicity. J Biol Chem. 1989 Apr 5;264(10):5598–5605. [PubMed] [Google Scholar]
  13. Freeman M. L., Spitz D. R., Meredith M. J. Does heat shock enhance oxidative stress? Studies with ferrous and ferric iron. Radiat Res. 1990 Dec;124(3):288–293. [PubMed] [Google Scholar]
  14. Hammond S. M., Bernstein E., Beach D., Hannon G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000 Mar 16;404(6775):293–296. doi: 10.1038/35005107. [DOI] [PubMed] [Google Scholar]
  15. Jacobi H., Eicke B., Witte I. DNA strand break induction and enhanced cytotoxicity of propyl gallate in the presence of copper(II). Free Radic Biol Med. 1998 Apr;24(6):972–978. doi: 10.1016/s0891-5849(97)00400-0. [DOI] [PubMed] [Google Scholar]
  16. Lee S. M., Park J. W. Thermosensitive phenotype of yeast mutant lacking thioredoxin peroxidase. Arch Biochem Biophys. 1998 Nov 1;359(1):99–106. doi: 10.1006/abbi.1998.0896. [DOI] [PubMed] [Google Scholar]
  17. Li Y., Kuppusamy P., Zweier J. L., Trush M. A. ESR evidence for the generation of reactive oxygen species from the copper-mediated oxidation of the benzene metabolite, hydroquinone: role in DNA damage. Chem Biol Interact. 1995 Feb;94(2):101–120. doi: 10.1016/0009-2797(94)03326-4. [DOI] [PubMed] [Google Scholar]
  18. Park S. G., Cha M. K., Jeong W., Kim I. H. Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J Biol Chem. 2000 Feb 25;275(8):5723–5732. doi: 10.1074/jbc.275.8.5723. [DOI] [PubMed] [Google Scholar]
  19. Radyuk S. N., Klichko V. I., Spinola B., Sohal R. S., Orr W. C. The peroxiredoxin gene family in Drosophila melanogaster. Free Radic Biol Med. 2001 Nov 1;31(9):1090–1100. doi: 10.1016/s0891-5849(01)00692-x. [DOI] [PubMed] [Google Scholar]
  20. Shen H., Yang C., Liu J., Ong C. Dual role of glutathione in selenite-induced oxidative stress and apoptosis in human hepatoma cells. Free Radic Biol Med. 2000 Apr 1;28(7):1115–1124. doi: 10.1016/s0891-5849(00)00206-9. [DOI] [PubMed] [Google Scholar]
  21. Simzar S., Ellyin R., Shau H., Sarafian T. A. Contrasting antioxidant and cytotoxic effects of peroxiredoxin I and II in PC12 and NIH3T3 cells. Neurochem Res. 2000 Dec;25(12):1613–1621. doi: 10.1023/a:1026670620633. [DOI] [PubMed] [Google Scholar]
  22. Stohs S. J., Bagchi D., Hassoun E., Bagchi M. Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol. 2001;20(2):77–88. [PubMed] [Google Scholar]
  23. Vairetti M., Griffini P., Pietrocola G., Richelmi P., Freitas I. Cold-induced apoptosis in isolated rat hepatocytes: protective role of glutathione. Free Radic Biol Med. 2001 Oct 15;31(8):954–961. doi: 10.1016/s0891-5849(01)00670-0. [DOI] [PubMed] [Google Scholar]
  24. Valverde M., Trejo C., Rojas E. Is the capacity of lead acetate and cadmium chloride to induce genotoxic damage due to direct DNA-metal interaction? Mutagenesis. 2001 May;16(3):265–270. doi: 10.1093/mutage/16.3.265. [DOI] [PubMed] [Google Scholar]
  25. Wong Chi-Ming, Zhou Yuan, Ng Raymond W. M., Kung Hf Hsiang-fu, Jin Dong-Yan. Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress. J Biol Chem. 2001 Dec 10;277(7):5385–5394. doi: 10.1074/jbc.M106846200. [DOI] [PubMed] [Google Scholar]
  26. Yan L. J., Levine R. L., Sohal R. S. Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11168–11172. doi: 10.1073/pnas.94.21.11168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yang D., Lu H., Erickson J. W. Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. Curr Biol. 2000 Oct 5;10(19):1191–1200. doi: 10.1016/s0960-9822(00)00732-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES