Abstract
Neuronal ceroid lipofuscinosis type 6 and its sheep model (OCL6) are lysosomal storage disorders caused by mutations in the CLN6 gene product of unknown function. It has been proposed that mitochondrial dysfunction, including defects in mitochondrial protein degradation, organelle enlargement and functional changes in oxidative phosphorylation, may contribute to the disease pathology. To further explore the disease mechanisms underlying CLN6, protein expression was compared between normal and affected tissues. Using two-dimensional electrophoretic separation of proteins, MS and immunoblotting, MnSOD (manganese-dependent superoxide dismutase) was found to be significantly and specifically increased in fibroblasts and brain extracts of both human and sheep affected with CLN6. Both the activity and expression of MnSOD mRNA were enhanced in affected fibroblasts. Confocal fluorescence microscopy and immunohistochemical studies revealed the presence of MnSOD in mitochondria of CLN6 fibroblasts and in CLN6 brain sections within both neurons and hypertrophic astrocytes. These data suggest that oxidative stress and/or the production of pro-inflammatory cytokines are characteristic features of human and sheep CLN6, resulting in elevated expression of MnSOD, which may be important for diagnostic purposes.
Full Text
The Full Text of this article is available as a PDF (272.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
- Broom M. F., Zhou C., Broom J. E., Barwell K. J., Jolly R. D., Hill D. F. Ovine neuronal ceroid lipofuscinosis: a large animal model syntenic with the human neuronal ceroid lipofuscinosis variant CLN6. J Med Genet. 1998 Sep;35(9):717–721. doi: 10.1136/jmg.35.9.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cook R. W., Jolly R. D., Palmer D. N., Tammen I., Broom M. F., McKinnon R. Neuronal ceroid lipofuscinosis in Merino sheep. Aust Vet J. 2002 May;80(5):292–297. doi: 10.1111/j.1751-0813.2002.tb10847.x. [DOI] [PubMed] [Google Scholar]
- Davis C. A., Monnier J. M., Nick H. S. A coding region determinant of instability regulates levels of manganese superoxide dismutase mRNA. J Biol Chem. 2001 Aug 6;276(40):37317–37326. doi: 10.1074/jbc.M104378200. [DOI] [PubMed] [Google Scholar]
- Elleder M., Sokolová J., Hrebícek M. Follow-up study of subunit c of mitochondrial ATP synthase (SCMAS) in Batten disease and in unrelated lysosomal disorders. Acta Neuropathol. 1997 Apr;93(4):379–390. doi: 10.1007/s004010050629. [DOI] [PubMed] [Google Scholar]
- Ezaki J., Tanida I., Kanehagi N., Kominami E. A lysosomal proteinase, the late infantile neuronal ceroid lipofuscinosis gene (CLN2) product, is essential for degradation of a hydrophobic protein, the subunit c of ATP synthase. J Neurochem. 1999 Jun;72(6):2573–2582. doi: 10.1046/j.1471-4159.1999.0722573.x. [DOI] [PubMed] [Google Scholar]
- Fahn S., Cohen G. The oxidant stress hypothesis in Parkinson's disease: evidence supporting it. Ann Neurol. 1992 Dec;32(6):804–812. doi: 10.1002/ana.410320616. [DOI] [PubMed] [Google Scholar]
- Fearnley I. M., Walker J. E., Martinus R. D., Jolly R. D., Kirkland K. B., Shaw G. J., Palmer D. N. The sequence of the major protein stored in ovine ceroid lipofuscinosis is identical with that of the dicyclohexylcarbodiimide-reactive proteolipid of mitochondrial ATP synthase. Biochem J. 1990 Jun 15;268(3):751–758. doi: 10.1042/bj2680751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrante R. J., Browne S. E., Shinobu L. A., Bowling A. C., Baik M. J., MacGarvey U., Kowall N. W., Brown R. H., Jr, Beal M. F. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem. 1997 Nov;69(5):2064–2074. doi: 10.1046/j.1471-4159.1997.69052064.x. [DOI] [PubMed] [Google Scholar]
- Fridovich I. Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem. 1989 May 15;264(14):7761–7764. [PubMed] [Google Scholar]
- Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem. 1995;64:97–112. doi: 10.1146/annurev.bi.64.070195.000525. [DOI] [PubMed] [Google Scholar]
- Gao Hanlin, Boustany Rose-Mary N., Espinola Janice A., Cotman Susan L., Srinidhi Lakshmi, Antonellis Kristen Auger, Gillis Tammy, Qin Xuebin, Liu Shumei, Donahue Leah R. Mutations in a novel CLN6-encoded transmembrane protein cause variant neuronal ceroid lipofuscinosis in man and mouse. Am J Hum Genet. 2001 Dec 21;70(2):324–335. doi: 10.1086/338190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goebel H. H., Schochet S. S., Jaynes M., Brück W., Kohlschütter A., Hentati F. Progress in neuropathology of the neuronal ceroid lipofuscinoses. Mol Genet Metab. 1999 Apr;66(4):367–372. doi: 10.1006/mgme.1999.2808. [DOI] [PubMed] [Google Scholar]
- Gray F., Chrétien F., Adle-Biassette H., Dorandeu A., Ereau T., Delisle M. B., Kopp N., Ironside J. W., Vital C. Neuronal apoptosis in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol. 1999 Apr;58(4):321–328. doi: 10.1097/00005072-199904000-00002. [DOI] [PubMed] [Google Scholar]
- Herva R., Tyynelä J., Hirvasniemi A., Syrjäkallio-Ylitalo M., Haltia M. Northern epilepsy: a novel form of neuronal ceroid-lipofuscinosis. Brain Pathol. 2000 Apr;10(2):215–222. doi: 10.1111/j.1750-3639.2000.tb00255.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jolly R. D., Brown S., Das A. M., Walkley S. U. Mitochondrial dysfunction in the neuronal ceroid-lipofuscinoses (Batten disease). Neurochem Int. 2002 May;40(6):565–571. doi: 10.1016/s0197-0186(01)00128-0. [DOI] [PubMed] [Google Scholar]
- Jolly R. D., Shimada A., Dopfmer I., Slack P. M., Birtles M. J., Palmer D. N. Ceroid-lipofuscinosis (Batten's disease): pathogenesis and sequential neuropathological changes in the ovine model. Neuropathol Appl Neurobiol. 1989 Jul-Aug;15(4):371–383. doi: 10.1111/j.1365-2990.1989.tb01236.x. [DOI] [PubMed] [Google Scholar]
- Jolly R. D., Walkley S. U. Ovine ceroid lipofuscinosis (OCL6): postulated mechanism of neurodegeneration. Mol Genet Metab. 1999 Apr;66(4):376–380. doi: 10.1006/mgme.1999.2821. [DOI] [PubMed] [Google Scholar]
- Koike M., Nakanishi H., Saftig P., Ezaki J., Isahara K., Ohsawa Y., Schulz-Schaeffer W., Watanabe T., Waguri S., Kametaka S. Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J Neurosci. 2000 Sep 15;20(18):6898–6906. doi: 10.1523/JNEUROSCI.20-18-06898.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lassmann H., Bancher C., Breitschopf H., Wegiel J., Bobinski M., Jellinger K., Wisniewski H. M. Cell death in Alzheimer's disease evaluated by DNA fragmentation in situ. Acta Neuropathol. 1995;89(1):35–41. doi: 10.1007/BF00294257. [DOI] [PubMed] [Google Scholar]
- Liu X., Kim C. N., Yang J., Jemmerson R., Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996 Jul 12;86(1):147–157. doi: 10.1016/s0092-8674(00)80085-9. [DOI] [PubMed] [Google Scholar]
- MacMillan-Crow L. A., Crow J. P., Thompson J. A. Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry. 1998 Feb 10;37(6):1613–1622. doi: 10.1021/bi971894b. [DOI] [PubMed] [Google Scholar]
- Macmillan-Crow L. A., Cruthirds D. L. Invited review: manganese superoxide dismutase in disease. Free Radic Res. 2001 Apr;34(4):325–336. doi: 10.1080/10715760100300281. [DOI] [PubMed] [Google Scholar]
- Mayhew I. G., Jolly R. D., Pickett B. T., Slack P. M. Ceroid-lipofuscinosis (Batten's disease): pathogenesis of blindness in the ovine model. Neuropathol Appl Neurobiol. 1985 Jul-Aug;11(4):273–290. doi: 10.1111/j.1365-2990.1985.tb00025.x. [DOI] [PubMed] [Google Scholar]
- Nakanishi H., Zhang J., Koike M., Nishioku T., Okamoto Y., Kominami E., von Figura K., Peters C., Yamamoto K., Saftig P. Involvement of nitric oxide released from microglia-macrophages in pathological changes of cathepsin D-deficient mice. J Neurosci. 2001 Oct 1;21(19):7526–7533. doi: 10.1523/JNEUROSCI.21-19-07526.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oberley L. W., St Clair D. K., Autor A. P., Oberley T. D. Increase in manganese superoxide dismutase activity in the mouse heart after X-irradiation. Arch Biochem Biophys. 1987 Apr;254(1):69–80. doi: 10.1016/0003-9861(87)90082-8. [DOI] [PubMed] [Google Scholar]
- Palmer D. N., Fearnley I. M., Walker J. E., Hall N. A., Lake B. D., Wolfe L. S., Haltia M., Martinus R. D., Jolly R. D. Mitochondrial ATP synthase subunit c storage in the ceroid-lipofuscinoses (Batten disease). Am J Med Genet. 1992 Feb 15;42(4):561–567. doi: 10.1002/ajmg.1320420428. [DOI] [PubMed] [Google Scholar]
- Palmer D. N., Jolly R. D., van Mil H. C., Tyynelä J., Westlake V. J. Different patterns of hydrophobic protein storage in different forms of neuronal ceroid lipofuscinosis (NCL, Batten disease). Neuropediatrics. 1997 Feb;28(1):45–48. doi: 10.1055/s-2007-973666. [DOI] [PubMed] [Google Scholar]
- Palmer D. N., Martinus R. D., Cooper S. M., Midwinter G. G., Reid J. C., Jolly R. D. Ovine ceroid lipofuscinosis. The major lipopigment protein and the lipid-binding subunit of mitochondrial ATP synthase have the same NH2-terminal sequence. J Biol Chem. 1989 Apr 5;264(10):5736–5740. [PubMed] [Google Scholar]
- Petronilli V., Costantini P., Scorrano L., Colonna R., Passamonti S., Bernardi P. The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. J Biol Chem. 1994 Jun 17;269(24):16638–16642. [PubMed] [Google Scholar]
- Ranta S., Zhang Y., Ross B., Lonka L., Takkunen E., Messer A., Sharp J., Wheeler R., Kusumi K., Mole S. The neuronal ceroid lipofuscinoses in human EPMR and mnd mutant mice are associated with mutations in CLN8. Nat Genet. 1999 Oct;23(2):233–236. doi: 10.1038/13868. [DOI] [PubMed] [Google Scholar]
- Richter C., Park J. W., Ames B. N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6465–6467. doi: 10.1073/pnas.85.17.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Savukoski M., Klockars T., Holmberg V., Santavuori P., Lander E. S., Peltonen L. CLN5, a novel gene encoding a putative transmembrane protein mutated in Finnish variant late infantile neuronal ceroid lipofuscinosis. Nat Genet. 1998 Jul;19(3):286–288. doi: 10.1038/975. [DOI] [PubMed] [Google Scholar]
- Sleat D. E., Donnelly R. J., Lackland H., Liu C. G., Sohar I., Pullarkat R. K., Lobel P. Association of mutations in a lysosomal protein with classical late-infantile neuronal ceroid lipofuscinosis. Science. 1997 Sep 19;277(5333):1802–1805. doi: 10.1126/science.277.5333.1802. [DOI] [PubMed] [Google Scholar]
- Tyynelä J., Sohar I., Sleat D. E., Gin R. M., Donnelly R. J., Baumann M., Haltia M., Lobel P. A mutation in the ovine cathepsin D gene causes a congenital lysosomal storage disease with profound neurodegeneration. EMBO J. 2000 Jun 15;19(12):2786–2792. doi: 10.1093/emboj/19.12.2786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tyynelä J., Suopanki J., Santavuori P., Baumann M., Haltia M. Variant late infantile neuronal ceroid-lipofuscinosis: pathology and biochemistry. J Neuropathol Exp Neurol. 1997 Apr;56(4):369–375. doi: 10.1097/00005072-199704000-00005. [DOI] [PubMed] [Google Scholar]
- Vesa J., Hellsten E., Verkruyse L. A., Camp L. A., Rapola J., Santavuori P., Hofmann S. L., Peltonen L. Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature. 1995 Aug 17;376(6541):584–587. doi: 10.1038/376584a0. [DOI] [PubMed] [Google Scholar]
- Visner G. A., Dougall W. C., Wilson J. M., Burr I. A., Nick H. S. Regulation of manganese superoxide dismutase by lipopolysaccharide, interleukin-1, and tumor necrosis factor. Role in the acute inflammatory response. J Biol Chem. 1990 Feb 15;265(5):2856–2864. [PubMed] [Google Scholar]
- Wada R., Tifft C. J., Proia R. L. Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10954–10959. doi: 10.1073/pnas.97.20.10954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wheeler Ruth B., Sharp Julie D., Schultz Roger A., Joslin John M., Williams Ruth E., Mole Sara E. The gene mutated in variant late-infantile neuronal ceroid lipofuscinosis (CLN6) and in nclf mutant mice encodes a novel predicted transmembrane protein. Am J Hum Genet. 2001 Nov 27;70(2):537–542. doi: 10.1086/338708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong G. H., Goeddel D. V. Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science. 1988 Nov 11;242(4880):941–944. doi: 10.1126/science.3263703. [DOI] [PubMed] [Google Scholar]
- Yoshioka T., Homma T., Meyrick B., Takeda M., Moore-Jarrett T., Kon V., Ichikawa I. Oxidants induce transcriptional activation of manganese superoxide dismutase in glomerular cells. Kidney Int. 1994 Aug;46(2):405–413. doi: 10.1038/ki.1994.288. [DOI] [PubMed] [Google Scholar]