Abstract
An analytical solution is derived for voltage transients in an arbitrarily branching passive cable neurone model with a soma and somatic shunt. The response to injected currents can be represented as an infinite series of exponentially decaying components with different time constants and amplitudes. The time constants of a given model, obtained from the roots of a recursive transcendental equation, are independent of the stimulating and recording positions. Each amplitude is the product of three factors dependent on the corresponding root: one constant over the cell, one varying with the input site, and one with the recording site. The amplitudes are not altered by interchanging these sites. The solution reveals explicitly some of the parameter dependencies of the responses. An efficient recursive root-finding algorithm is described. Certain regular geometries lead to "lost" roots; difficulties associated with these can be avoided by making small changes to the lengths of affected segments. Complicated cells, such as a CA1 pyramid, produce many closely spaced time constants in the range of interest. Models with large somatic shunts and dendrites of unequal electrotonic lengths can produce large amplitude waveform components with surprisingly slow time constants. This analytic solution should complement existing passive neurone modeling techniques.
Full text
PDF


























Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbott L. F., Farhi E., Gutmann S. The path integral for dendritic trees. Biol Cybern. 1991;66(1):49–60. doi: 10.1007/BF00196452. [DOI] [PubMed] [Google Scholar]
- Benz R., Fröhlich O., Läuger P., Montal M. Electrical capacity of black lipid films and of lipid bilayers made from monolayers. Biochim Biophys Acta. 1975 Jul 3;394(3):323–334. doi: 10.1016/0005-2736(75)90287-4. [DOI] [PubMed] [Google Scholar]
- Bhalla U. S., Bilitch D. H., Bower J. M. Rallpacks: a set of benchmarks for neuronal simulators. Trends Neurosci. 1992 Nov;15(11):453–458. doi: 10.1016/0166-2236(92)90009-w. [DOI] [PubMed] [Google Scholar]
- Bluman G. W., Tuckwell H. C. Techniques for obtaining analytical solutions for Rall's model neuron. J Neurosci Methods. 1987 Jun;20(2):151–166. doi: 10.1016/0165-0270(87)90047-1. [DOI] [PubMed] [Google Scholar]
- Brown T. H., Perkel D. H., Norris J. C., Peacock J. H. Electrotonic structure and specific membrane properties of mouse dorsal root ganglion neurons. J Neurophysiol. 1981 Jan;45(1):1–15. doi: 10.1152/jn.1981.45.1.1. [DOI] [PubMed] [Google Scholar]
- Butz E. G., Cowan J. D. Transient potentials in dendritic systems of arbitrary geometry. Biophys J. 1974 Sep;14(9):661–689. doi: 10.1016/S0006-3495(74)85943-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cao B. J., Abbott L. F. A new computational method for cable theory problems. Biophys J. 1993 Feb;64(2):303–313. doi: 10.1016/S0006-3495(93)81370-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clements J. D., Redman S. J. Cable properties of cat spinal motoneurones measured by combining voltage clamp, current clamp and intracellular staining. J Physiol. 1989 Feb;409:63–87. doi: 10.1113/jphysiol.1989.sp017485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colquhoun D., Jonas P., Sakmann B. Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. J Physiol. 1992 Dec;458:261–287. doi: 10.1113/jphysiol.1992.sp019417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durand D. The somatic shunt cable model for neurons. Biophys J. 1984 Nov;46(5):645–653. doi: 10.1016/S0006-3495(84)84063-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards F. A., Konnerth A., Sakmann B., Takahashi T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch. 1989 Sep;414(5):600–612. doi: 10.1007/BF00580998. [DOI] [PubMed] [Google Scholar]
- Evans J. D., Kember G. C., Major G. Techniques for obtaining analytical solutions to the multicylinder somatic shunt cable model for passive neurones. Biophys J. 1992 Aug;63(2):350–365. doi: 10.1016/S0006-3495(92)81631-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FitzGibbon T., Reese B. E. Position of growth cones within the retinal nerve fibre layer of fetal ferrets. J Comp Neurol. 1992 Sep 8;323(2):153–166. doi: 10.1002/cne.903230203. [DOI] [PubMed] [Google Scholar]
- Gustafsson B., Pinter M. J. Relations among passive electrical properties of lumbar alpha-motoneurones of the cat. J Physiol. 1984 Nov;356:401–431. doi: 10.1113/jphysiol.1984.sp015473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris K. M., Stevens J. K. Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci. 1989 Aug;9(8):2982–2997. doi: 10.1523/JNEUROSCI.09-08-02982.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haydon D. A., Requena J., Urban B. W. Some effects of aliphatic hydrocarbons on the electrical capacity and ionic currents of the squid giant axon membrane. J Physiol. 1980 Dec;309:229–245. doi: 10.1113/jphysiol.1980.sp013506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hines M. A program for simulation of nerve equations with branching geometries. Int J Biomed Comput. 1989 Mar;24(1):55–68. doi: 10.1016/0020-7101(89)90007-x. [DOI] [PubMed] [Google Scholar]
- Hines M. Efficient computation of branched nerve equations. Int J Biomed Comput. 1984 Jan-Feb;15(1):69–76. doi: 10.1016/0020-7101(84)90008-4. [DOI] [PubMed] [Google Scholar]
- Holmes W. R. A continuous cable method for determining the transient potential in passive dendritic trees of known geometry. Biol Cybern. 1986;55(2-3):115–124. doi: 10.1007/BF00341927. [DOI] [PubMed] [Google Scholar]
- Holmes W. R., Rall W. Electrotonic length estimates in neurons with dendritic tapering or somatic shunt. J Neurophysiol. 1992 Oct;68(4):1421–1437. doi: 10.1152/jn.1992.68.4.1421. [DOI] [PubMed] [Google Scholar]
- Holmes W. R., Rall W. Estimating the electrotonic structure of neurons with compartmental models. J Neurophysiol. 1992 Oct;68(4):1438–1452. doi: 10.1152/jn.1992.68.4.1438. [DOI] [PubMed] [Google Scholar]
- Holmes W. R., Segev I., Rall W. Interpretation of time constant and electrotonic length estimates in multicylinder or branched neuronal structures. J Neurophysiol. 1992 Oct;68(4):1401–1420. doi: 10.1152/jn.1992.68.4.1401. [DOI] [PubMed] [Google Scholar]
- Hounsgaard J., Midtgaard J. Dendrite processing in more ways than one . Trends Neurosci. 1989 Sep;12(9):313–315. doi: 10.1016/0166-2236(89)90036-2. [DOI] [PubMed] [Google Scholar]
- Iansek R., Redman S. J. The amplitude, time course and charge of unitary excitatory post-synaptic potentials evoked in spinal motoneurone dendrites. J Physiol. 1973 Nov;234(3):665–688. doi: 10.1113/jphysiol.1973.sp010366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jack J. J., Redman S. J. The propagation of transient potentials in some linear cable structures. J Physiol. 1971 Jun;215(2):283–320. doi: 10.1113/jphysiol.1971.sp009472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson M. B. Cable analysis with the whole-cell patch clamp. Theory and experiment. Biophys J. 1992 Mar;61(3):756–766. doi: 10.1016/S0006-3495(92)81880-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawato M. Cable properties of a neuron model with non-uniform membrane resistivity. J Theor Biol. 1984 Nov 7;111(1):149–169. doi: 10.1016/s0022-5193(84)80202-7. [DOI] [PubMed] [Google Scholar]
- Koch C., Poggio T. A simple algorithm for solving the cable equation in dendritic trees of arbitrary geometry. J Neurosci Methods. 1985 Feb;12(4):303–315. doi: 10.1016/0165-0270(85)90015-9. [DOI] [PubMed] [Google Scholar]
- Larkman A. U. Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns. J Comp Neurol. 1991 Apr 8;306(2):307–319. doi: 10.1002/cne.903060207. [DOI] [PubMed] [Google Scholar]
- Larkman A. U. Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions. J Comp Neurol. 1991 Apr 8;306(2):332–343. doi: 10.1002/cne.903060209. [DOI] [PubMed] [Google Scholar]
- Larkman A., Mason A. Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. I. Establishment of cell classes. J Neurosci. 1990 May;10(5):1407–1414. doi: 10.1523/JNEUROSCI.10-05-01407.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larkman A., Stratford K., Jack J. Quantal analysis of excitatory synaptic action and depression in hippocampal slices. Nature. 1991 Mar 28;350(6316):344–347. doi: 10.1038/350344a0. [DOI] [PubMed] [Google Scholar]
- Major G., Evans J. D., Jack J. J. Solutions for transients in arbitrarily branching cables: II. Voltage clamp theory. Biophys J. 1993 Jul;65(1):450–468. doi: 10.1016/S0006-3495(93)81038-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Major G. Solutions for transients in arbitrarily branching cables: III. Voltage clamp problems. Biophys J. 1993 Jul;65(1):469–491. doi: 10.1016/S0006-3495(93)81039-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mascagni M. A parallelizing algorithm for computing solutions to arbitrarily branched cable neuron models. J Neurosci Methods. 1991 Jan;36(1):105–114. doi: 10.1016/0165-0270(91)90143-n. [DOI] [PubMed] [Google Scholar]
- Moore J. A., Appenteng K. The morphology and electrical geometry of rat jaw-elevator motoneurones. J Physiol. 1991;440:325–343. doi: 10.1113/jphysiol.1991.sp018711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nitzan R., Segev I., Yarom Y. Voltage behavior along the irregular dendritic structure of morphologically and physiologically characterized vagal motoneurons in the guinea pig. J Neurophysiol. 1990 Feb;63(2):333–346. doi: 10.1152/jn.1990.63.2.333. [DOI] [PubMed] [Google Scholar]
- Perkel D. H., Mulloney B., Budelli R. W. Quantitative methods for predicting neuronal behavior. Neuroscience. 1981;6(5):823–837. doi: 10.1016/0306-4522(81)90165-2. [DOI] [PubMed] [Google Scholar]
- Peters A., Kaiserman-Abramof I. R. The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am J Anat. 1970 Apr;127(4):321–355. doi: 10.1002/aja.1001270402. [DOI] [PubMed] [Google Scholar]
- Poznanski R. R. A generalized tapering equivalent cable model for dendritic neurons. Bull Math Biol. 1991;53(3):457–467. doi: 10.1007/BF02460728. [DOI] [PubMed] [Google Scholar]
- Provencher S. W. A Fourier method for the analysis of exponential decay curves. Biophys J. 1976 Jan;16(1):27–41. doi: 10.1016/S0006-3495(76)85660-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RALL W. Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol. 1959 Nov;1:491–527. doi: 10.1016/0014-4886(59)90046-9. [DOI] [PubMed] [Google Scholar]
- Rall W., Burke R. E., Holmes W. R., Jack J. J., Redman S. J., Segev I. Matching dendritic neuron models to experimental data. Physiol Rev. 1992 Oct;72(4 Suppl):S159–S186. doi: 10.1152/physrev.1992.72.suppl_4.S159. [DOI] [PubMed] [Google Scholar]
- Rall W. Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol. 1967 Sep;30(5):1138–1168. doi: 10.1152/jn.1967.30.5.1138. [DOI] [PubMed] [Google Scholar]
- Rall W., Rinzel J. Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J. 1973 Jul;13(7):648–687. doi: 10.1016/S0006-3495(73)86014-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rall W. Time constants and electrotonic length of membrane cylinders and neurons. Biophys J. 1969 Dec;9(12):1483–1508. doi: 10.1016/S0006-3495(69)86467-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rinzel J., Rall W. Transient response in a dendritic neuron model for current injected at one branch. Biophys J. 1974 Oct;14(10):759–790. doi: 10.1016/S0006-3495(74)85948-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose P. K., Dagum A. Nonequivalent cylinder models of neurons: interpretation of voltage transients generated by somatic current injection. J Neurophysiol. 1988 Jul;60(1):125–148. doi: 10.1152/jn.1988.60.1.125. [DOI] [PubMed] [Google Scholar]
- SCHWAN H. P., CARSTENSEN E. L. Di-electric properties of the membrane of lysed erythrocytes. Science. 1957 May 17;125(3255):985–986. doi: 10.1126/science.125.3255.985. [DOI] [PubMed] [Google Scholar]
- Segev I., Fleshman J. W., Miller J. P., Bunow B. Modeling the electrical behavior of anatomically complex neurons using a network analysis program: passive membrane. Biol Cybern. 1985;53(1):27–40. doi: 10.1007/BF00355688. [DOI] [PubMed] [Google Scholar]
- Spain W. J., Schwindt P. C., Crill W. E. Anomalous rectification in neurons from cat sensorimotor cortex in vitro. J Neurophysiol. 1987 May;57(5):1555–1576. doi: 10.1152/jn.1987.57.5.1555. [DOI] [PubMed] [Google Scholar]
- Strain G. M., Brockman W. H. A modified cable model for neuron processes with non-constant diameters. J Theor Biol. 1975 Jun;51(2):475–494. doi: 10.1016/0022-5193(75)90075-2. [DOI] [PubMed] [Google Scholar]
- Takashima S. Membrane capacity of squid giant axon during hyper- and depolarizations. J Membr Biol. 1976 Jun 9;27(1-2):21–39. doi: 10.1007/BF01869127. [DOI] [PubMed] [Google Scholar]
- Takashima S., Schwan H. P. Passive electrical properties of squid axon membrane. J Membr Biol. 1974;17(1):51–68. doi: 10.1007/BF01870172. [DOI] [PubMed] [Google Scholar]
- Turner D. A. Segmental cable evaluation of somatic transients in hippocampal neurons (CA1, CA3, and dentate). Biophys J. 1984 Jul;46(1):73–84. doi: 10.1016/S0006-3495(84)84000-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner D. A. Waveform and amplitude characteristics of evoked responses to dendritic stimulation of CA1 guinea-pig pyramidal cells. J Physiol. 1988 Jan;395:419–439. doi: 10.1113/jphysiol.1988.sp016927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White J. A., Manis P. B., Young E. D. The parameter identification problem for the somatic shunt model. Biol Cybern. 1992;66(4):307–318. doi: 10.1007/BF00203667. [DOI] [PubMed] [Google Scholar]
- Wilson C. J. Passive cable properties of dendritic spines and spiny neurons. J Neurosci. 1984 Jan;4(1):281–297. doi: 10.1523/JNEUROSCI.04-01-00281.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]