Abstract
In spite of the fact that planar lipid bilayers are still the best-suited artificial membrane system for the study of reconstituted ion channels and receptors, data dealing with their physical characterization, especially as regards dynamics, are scanty. A combined electrical and optical chamber was designed and allowed fluorescence recovery after photobleaching recovery curves to be recorded from stable virtually solvent-free bilayers. D, the lateral diffusion coefficient of N-(7-nitrobenzoyl-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn- glycero-3-phosphoethanolamine, was found to be relatively insensitive to the phospholipid composition (headgroup, chain unsaturation, etc.), whereas inclusion of 33-50% cholesterol in the membrane reduced D by a factor of 2. Divalent cations significantly reduced D of negatively charged bilayers. These results compare well with data gathered on other model and natural systems. In addition, the incorporation of the voltage-dependent pore-former alamethicin did slightly reduce lipid lateral mobility. This study demonstrates the feasibility of such experiments with planar bilayers, which are amenable to physical constraints, and thus offers new opportunities for systematic studies of structure-function relationships in membrane-associating molecules.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson C. M., Georgiou G. N., Morrison I. E., Stevenson G. V., Cherry R. J. Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. Low-density lipoprotein and influenza virus receptor mobility at 4 degrees C. J Cell Sci. 1992 Feb;101(Pt 2):415–425. doi: 10.1242/jcs.101.2.415. [DOI] [PubMed] [Google Scholar]
- Aoki H., Ida S. Nucleotide sequence of a rice root ferredoxin-NADP+ reductase cDNA and its induction by nitrate. Biochim Biophys Acta. 1994 Jan 4;1183(3):553–556. doi: 10.1016/0005-2728(94)90085-x. [DOI] [PubMed] [Google Scholar]
- Batenburg A. M., Hibbeln J. C., Verkleij A. J., de Kruijff B. Melittin induces HII phase formation in cardiolipin model membranes. Biochim Biophys Acta. 1987 Sep 18;903(1):142–154. doi: 10.1016/0005-2736(87)90164-7. [DOI] [PubMed] [Google Scholar]
- Benz R., Fröhlich O., Läuger P., Montal M. Electrical capacity of black lipid films and of lipid bilayers made from monolayers. Biochim Biophys Acta. 1975 Jul 3;394(3):323–334. doi: 10.1016/0005-2736(75)90287-4. [DOI] [PubMed] [Google Scholar]
- Blatt E., Vaz W. L. The effects of Ca2+ on lipid diffusion. Chem Phys Lipids. 1986 Oct-Nov;41(3-4):183–194. doi: 10.1016/0009-3084(86)90021-6. [DOI] [PubMed] [Google Scholar]
- Bloom J. A., Webb W. W. Lipid diffusibility in the intact erythrocyte membrane. Biophys J. 1983 Jun;42(3):295–305. doi: 10.1016/S0006-3495(83)84397-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boheim G. Statistical analysis of alamethicin channels in black lipid membranes. J Membr Biol. 1974;19(3):277–303. doi: 10.1007/BF01869983. [DOI] [PubMed] [Google Scholar]
- Brullemans M., Helluin O., Dugast J. Y., Molle G., Duclohier H. Implication of segment S45 in the permeation pathway of voltage-dependent sodium channels. Eur Biophys J. 1994;23(1):39–49. doi: 10.1007/BF00192204. [DOI] [PubMed] [Google Scholar]
- Brullemans M., Tancrde P. Influence of torus on the capacitance of asymmetrical phospholipid bilayers. Biophys Chem. 1987 Sep;27(3):225–231. doi: 10.1016/0301-4622(87)80061-3. [DOI] [PubMed] [Google Scholar]
- Bussell S. J., Koch D. L., Hammer D. A. Effect of hydrodynamic interactions on the diffusion of integral membrane proteins: diffusion in plasma membranes. Biophys J. 1995 May;68(5):1836–1849. doi: 10.1016/S0006-3495(95)80360-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cafiso D. S. Alamethicin: a peptide model for voltage gating and protein-membrane interactions. Annu Rev Biophys Biomol Struct. 1994;23:141–165. doi: 10.1146/annurev.bb.23.060194.001041. [DOI] [PubMed] [Google Scholar]
- Chang H. M., Reitstetter R., Mason R. P., Gruener R. Attenuation of channel kinetics and conductance by cholesterol: an interpretation using structural stress as a unifying concept. J Membr Biol. 1995 Jan;143(1):51–63. doi: 10.1007/BF00232523. [DOI] [PubMed] [Google Scholar]
- Chen S. Y., Cheng K. H., Ortalano D. M. Lateral diffusion study of excimer-forming lipids in lamellar to inverted hexagonal phase transition of unsaturated phosphatidylethanolamine. Chem Phys Lipids. 1990 Mar;53(4):321–329. doi: 10.1016/0009-3084(90)90029-q. [DOI] [PubMed] [Google Scholar]
- Cherry R. J., Georgiou G. N., Morrison I. E. New insights into the structure of cell membranes from single particle tracking experiments. Biochem Soc Trans. 1994 Aug;22(3):781–784. doi: 10.1042/bst0220781. [DOI] [PubMed] [Google Scholar]
- Davoust J., Devaux P. F., Leger L. Fringe pattern photobleaching, a new method for the measurement of transport coefficients of biological macromolecules. EMBO J. 1982;1(10):1233–1238. doi: 10.1002/j.1460-2075.1982.tb00018.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dilger J. P., Benz R. Optical and electrical properties of thin monoolein lipid bilayers. J Membr Biol. 1985;85(2):181–189. doi: 10.1007/BF01871270. [DOI] [PubMed] [Google Scholar]
- Duclohier H., Molle G., Dugast J. Y., Spach G. Prolines are not essential residues in the "barrel-stave" model for ion channels induced by alamethicin analogues. Biophys J. 1992 Sep;63(3):868–873. doi: 10.1016/S0006-3495(92)81637-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fahey P. F., Koppel D. E., Barak L. S., Wolf D. E., Elson E. L., Webb W. W. Lateral diffusion in planar lipid bilayers. Science. 1977 Jan 21;195(4275):305–306. doi: 10.1126/science.831279. [DOI] [PubMed] [Google Scholar]
- Fahey P. F., Webb W. W. Lateral diffusion in phospholipid bilayer membranes and multilamellar liquid crystals. Biochemistry. 1978 Jul 25;17(15):3046–3053. doi: 10.1021/bi00608a016. [DOI] [PubMed] [Google Scholar]
- Fringeli U. P. Distribution and diffusion of alamethicin in a lecithin/water model membrane system. J Membr Biol. 1980 Jun 15;54(3):203–212. doi: 10.1007/BF01870236. [DOI] [PubMed] [Google Scholar]
- Gordon L. G., Haydon D. A. Potential-dependent conductances in lipid membranes containing alamethicin. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):433–447. doi: 10.1098/rstb.1975.0021. [DOI] [PubMed] [Google Scholar]
- Greenberg M. L., Axelrod D. Anomalously slow mobility of fluorescent lipid probes in the plasma membrane of the yeast Saccharomyces cerevisiae. J Membr Biol. 1993 Jan;131(2):115–127. doi: 10.1007/BF02791320. [DOI] [PubMed] [Google Scholar]
- Hall J. E., Vodyanoy I., Balasubramanian T. M., Marshall G. R. Alamethicin. A rich model for channel behavior. Biophys J. 1984 Jan;45(1):233–247. doi: 10.1016/S0006-3495(84)84151-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang H. W., Wu Y. Lipid-alamethicin interactions influence alamethicin orientation. Biophys J. 1991 Nov;60(5):1079–1087. doi: 10.1016/S0006-3495(91)82144-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson K., Sheets E. D., Simson R. Revisiting the fluid mosaic model of membranes. Science. 1995 Jun 9;268(5216):1441–1442. doi: 10.1126/science.7770769. [DOI] [PubMed] [Google Scholar]
- Joe E. H., Angelides K. J. Clustering and mobility of voltage-dependent sodium channels during myelination. J Neurosci. 1993 Jul;13(7):2993–3005. doi: 10.1523/JNEUROSCI.13-07-02993.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keller S. L., Bezrukov S. M., Gruner S. M., Tate M. W., Vodyanoy I., Parsegian V. A. Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids. Biophys J. 1993 Jul;65(1):23–27. doi: 10.1016/S0006-3495(93)81040-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koppel D. E., Axelrod D., Schlessinger J., Elson E. L., Webb W. W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J. 1976 Nov;16(11):1315–1329. doi: 10.1016/S0006-3495(76)85776-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krueger B. K., Worley J. F., 3rd, French R. J. Single sodium channels from rat brain incorporated into planar lipid bilayer membranes. Nature. 1983 May 12;303(5913):172–175. doi: 10.1038/303172a0. [DOI] [PubMed] [Google Scholar]
- Ladha S., Mackie A. R., Clark D. C. Cheek cell membrane fluidity measured by fluorescence recovery after photobleaching and steady-state fluorescence anisotropy. J Membr Biol. 1994 Nov;142(2):223–228. doi: 10.1007/BF00234944. [DOI] [PubMed] [Google Scholar]
- Lamb T. D. Stochastic simulation of activation in the G-protein cascade of phototransduction. Biophys J. 1994 Oct;67(4):1439–1454. doi: 10.1016/S0006-3495(94)80617-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leckband D. E., Israelachvili J. N., Schmitt F. J., Knoll W. Long-range attraction and molecular rearrangements in receptor-ligand interactions. Science. 1992 Mar 13;255(5050):1419–1421. doi: 10.1126/science.1542789. [DOI] [PubMed] [Google Scholar]
- Lewis B. A., Engelman D. M. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J Mol Biol. 1983 May 15;166(2):211–217. doi: 10.1016/s0022-2836(83)80007-2. [DOI] [PubMed] [Google Scholar]
- MacDonald A. G., Wraight P. C. Combined spectroscopic and electrical recording techniques in membrane research: prospects for single channel studies. Prog Biophys Mol Biol. 1995;63(1):1–29. doi: 10.1016/0079-6107(94)00007-v. [DOI] [PubMed] [Google Scholar]
- Montal M., Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561–3566. doi: 10.1073/pnas.69.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niles W. D., Levis R. A., Cohen F. S. Planar bilayer membranes made from phospholipid monolayers form by a thinning process. Biophys J. 1988 Mar;53(3):327–335. doi: 10.1016/S0006-3495(88)83110-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearce K. H., Hiskey R. G., Thompson N. L. Surface binding kinetics of prothrombin fragment 1 on planar membranes measured by total internal reflection fluorescence microscopy. Biochemistry. 1992 Jul 7;31(26):5983–5995. doi: 10.1021/bi00141a005. [DOI] [PubMed] [Google Scholar]
- Rebuffat S., Duclohier H., Auvin-Guette C., Molle G., Spach G., Bodo B. Membrane-modifying properties of the pore-forming peptaibols saturnisporin SA IV and harzianin HA V. FEMS Microbiol Immunol. 1992 Sep;5(1-3):151–160. doi: 10.1111/j.1574-6968.1992.tb05886.x. [DOI] [PubMed] [Google Scholar]
- Schindler H. Planar lipid-protein membranes: strategies of formation and of detecting dependencies of ion transport functions on membrane conditions. Methods Enzymol. 1989;171:225–253. doi: 10.1016/s0076-6879(89)71014-4. [DOI] [PubMed] [Google Scholar]
- Schlessinger J. Lateral and rotational diffusion of EGF-receptor complex: relationship to receptor-mediated endocytosis. Biopolymers. 1983 Jan;22(1):347–353. doi: 10.1002/bip.360220145. [DOI] [PubMed] [Google Scholar]
- Schootemeijer A., Van Beekhuizen A. E., Tertoolen L. G., De Laat S. W., Akkerman J. W. Cytosolic calcium ions regulate lipid mobility in the plasma membrane of the human megakaryoblastic cell line MEG-01. Eur J Biochem. 1994 Sep 1;224(2):423–430. doi: 10.1111/j.1432-1033.1994.00423.x. [DOI] [PubMed] [Google Scholar]
- Schram V., Tocanne J. F., Lopez A. Influence of obstacles on lipid lateral diffusion: computer simulation of FRAP experiments and application to proteoliposomes and biomembranes. Eur Biophys J. 1994;23(5):337–348. doi: 10.1007/BF00188657. [DOI] [PubMed] [Google Scholar]
- Shin Y. K., Freed J. H. Thermodynamics of phosphatidylcholine-cholesterol mixed model membranes in the liquid crystalline state studied by the orientational order parameter. Biophys J. 1989 Dec;56(6):1093–1100. doi: 10.1016/S0006-3495(89)82757-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shinitzky M. Membrane fluidity in malignancy. Adversative and recuperative. Biochim Biophys Acta. 1984;738(4):251–261. doi: 10.1016/0304-419x(83)90007-0. [DOI] [PubMed] [Google Scholar]
- Smith B. A., McConnell H. M. Determination of molecular motion in membranes using periodic pattern photobleaching. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2759–2763. doi: 10.1073/pnas.75.6.2759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stubbs C. D., Kouyama T., Kinosita K., Jr, Ikegami A. Effect of double bonds on the dynamic properties of the hydrocarbon region of lecithin bilayers. Biochemistry. 1981 Jul 21;20(15):4257–4262. doi: 10.1021/bi00518a004. [DOI] [PubMed] [Google Scholar]
- Tamm L. K., McConnell H. M. Supported phospholipid bilayers. Biophys J. 1985 Jan;47(1):105–113. doi: 10.1016/S0006-3495(85)83882-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tocanne J. F., Dupou-Cézanne L., Lopez A. Lateral diffusion of lipids in model and natural membranes. Prog Lipid Res. 1994;33(3):203–237. doi: 10.1016/0163-7827(94)90027-2. [DOI] [PubMed] [Google Scholar]
- Tournier J. F., Lopez A., Gas N., Tocanne J. F. The lateral motion of lipid molecules in the apical plasma membrane of endothelial cells is reversibly affected by the presence of cell junctions. Exp Cell Res. 1989 Apr;181(2):375–384. doi: 10.1016/0014-4827(89)90095-5. [DOI] [PubMed] [Google Scholar]
- Venable R. M., Zhang Y., Hardy B. J., Pastor R. W. Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. Science. 1993 Oct 8;262(5131):223–226. doi: 10.1126/science.8211140. [DOI] [PubMed] [Google Scholar]
- Vodyanoy V., Murphy R. B. Solvent-free lipid bimolecular membranes of large surface area. Biochim Biophys Acta. 1982 May 7;687(2):189–194. doi: 10.1016/0005-2736(82)90545-4. [DOI] [PubMed] [Google Scholar]
- Wedekind P., Kubitscheck U., Peters R. Scanning microphotolysis: a new photobleaching technique based on fast intensity modulation of a scanned laser beam and confocal imaging. J Microsc. 1994 Oct;176(Pt 1):23–33. doi: 10.1111/j.1365-2818.1994.tb03496.x. [DOI] [PubMed] [Google Scholar]
- White S. H. Studies of the physical chemistry of planar bilayer membranes using high-precision measurements of specific capacitance. Ann N Y Acad Sci. 1977 Dec 30;303:243–265. [PubMed] [Google Scholar]
- Wolf D. E. Designing, building, and using a fluorescence recovery after photobleaching instrument. Methods Cell Biol. 1989;30:271–306. doi: 10.1016/s0091-679x(08)60983-8. [DOI] [PubMed] [Google Scholar]
- Yguerabide J., Schmidt J. A., Yguerabide E. E. Lateral mobility in membranes as detected by fluorescence recovery after photobleaching. Biophys J. 1982 Oct;40(1):69–75. doi: 10.1016/S0006-3495(82)84459-7. [DOI] [PMC free article] [PubMed] [Google Scholar]