Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1996 Dec;71(6):3488–3500. doi: 10.1016/S0006-3495(96)79544-9

Molecular dynamics of the transition from L-selectin- to beta 2-integrin-dependent neutrophil adhesion under defined hydrodynamic shear.

A D Taylor 1, S Neelamegham 1, J D Hellums 1, C W Smith 1, S I Simon 1
PMCID: PMC1233836  PMID: 8968618

Abstract

Homotypic adhesion o2 neutrophils stimulated with chemoattractant is analogous to capture on vascular endothelium in that both processes depend on L-selectin and beta 2-integrin adhesion receptors. Under hydrodynamic shear, cell adhesion requires that receptors bind sufficient ligand over the duration of intercellular contact to withstand hydrodynamic stresses. Using cone-plate viscometry to apply a uniform linear shear field to suspensions of neutrophils, we conducted a detailed examination of the effect of shear rate and shear stress on the kinetics of cell aggregation. A collisional analysis based on Smoluchowski's flocculation theory was employed to fit the kinetics of aggregation with an adhesion efficiency. Adhesion efficiency increased with shear rate from approximately 20% at 100 s-1 to approximately 80% at 400 s-1. The increase in adhesion efficiency. Adhesion efficiency increased with shear rate from approximately 20% at 100 s-1 to approximately 80% at 400 s-1. The increase in adhesion efficiency with shear was dependent on L-selectin, and peak efficiency was maintained over a relatively narrow range of shear rates (400-800 s-1) and shear stresses (4-7 dyn/cm2). When L-selectin was blocked with antibody, beta 2-integrin (CD11a, b) supported adhesion at low shear rates (< 400 s-1). The binding kinetics of selectin and integrin appear to be optimized to function within discrete ranges of shear rate and stress, providing an intrinsic mechanism for the transition from neutrophil tethering to stable adhesion.

Full text

PDF
3488

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbassi O., Kishimoto T. K., McIntire L. V., Anderson D. C., Smith C. W. E-selectin supports neutrophil rolling in vitro under conditions of flow. J Clin Invest. 1993 Dec;92(6):2719–2730. doi: 10.1172/JCI116889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alon R., Feizi T., Yuen C. T., Fuhlbrigge R. C., Springer T. A. Glycolipid ligands for selectins support leukocyte tethering and rolling under physiologic flow conditions. J Immunol. 1995 May 15;154(10):5356–5366. [PubMed] [Google Scholar]
  3. Alon R., Hammer D. A., Springer T. A. Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature. 1995 Apr 6;374(6522):539–542. doi: 10.1038/374539a0. [DOI] [PubMed] [Google Scholar]
  4. Atherton A., Born G. V. Relationship between the velocity of rolling granulocytes and that of the blood flow in venules. J Physiol. 1973 Aug;233(1):157–165. doi: 10.1113/jphysiol.1973.sp010303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bargatze R. F., Kurk S., Butcher E. C., Jutila M. A. Neutrophils roll on adherent neutrophils bound to cytokine-induced endothelial cells via L-selectin on the rolling cells. J Exp Med. 1994 Nov 1;180(5):1785–1792. doi: 10.1084/jem.180.5.1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bennett T. A., Schammel C. M., Lynam E. B., Guyer D. A., Mellors A., Edwards B., Rogelj S., Sklar L. A. Evidence for a third component in neutrophil aggregation: potential roles of O-linked glycoproteins as L-selectin counter-structures. J Leukoc Biol. 1995 Nov;58(5):510–518. doi: 10.1002/jlb.58.5.510. [DOI] [PubMed] [Google Scholar]
  7. Butcher E. C. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell. 1991 Dec 20;67(6):1033–1036. doi: 10.1016/0092-8674(91)90279-8. [DOI] [PubMed] [Google Scholar]
  8. Cai T. Q., Wright S. D. Energetics of leukocyte integrin activation. J Biol Chem. 1995 Jun 16;270(24):14358–14365. doi: 10.1074/jbc.270.24.14358. [DOI] [PubMed] [Google Scholar]
  9. Diamond M. S., Springer T. A. A subpopulation of Mac-1 (CD11b/CD18) molecules mediates neutrophil adhesion to ICAM-1 and fibrinogen. J Cell Biol. 1993 Jan;120(2):545–556. doi: 10.1083/jcb.120.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Finger E. B., Puri K. D., Alon R., Lawrence M. B., von Andrian U. H., Springer T. A. Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature. 1996 Jan 18;379(6562):266–269. doi: 10.1038/379266a0. [DOI] [PubMed] [Google Scholar]
  11. Gaboury J. P., Kubes P. Reductions in physiologic shear rates lead to CD11/CD18-dependent, selectin-independent leukocyte rolling in vivo. Blood. 1994 Jan 15;83(2):345–350. [PubMed] [Google Scholar]
  12. Goldsmith H. L., Bell D. N., Braovac S., Steinberg A., McIntosh F. Physical and chemical effects of red cells in the shear-induced aggregation of human platelets. Biophys J. 1995 Oct;69(4):1584–1595. doi: 10.1016/S0006-3495(95)80031-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hellums J. D. 1993 Whitaker Lecture: biorheology in thrombosis research. Ann Biomed Eng. 1994 Sep-Oct;22(5):445–455. doi: 10.1007/BF02367081. [DOI] [PubMed] [Google Scholar]
  14. Huber A. R., Kunkel S. L., Todd R. F., 3rd, Weiss S. J. Regulation of transendothelial neutrophil migration by endogenous interleukin-8. Science. 1991 Oct 4;254(5028):99–102. doi: 10.1126/science.1718038. [DOI] [PubMed] [Google Scholar]
  15. Hughes B. J., Hollers J. C., Crockett-Torabi E., Smith C. W. Recruitment of CD11b/CD18 to the neutrophil surface and adherence-dependent cell locomotion. J Clin Invest. 1992 Nov;90(5):1687–1696. doi: 10.1172/JCI116041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hynes R. O. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. doi: 10.1016/0092-8674(87)90233-9. [DOI] [PubMed] [Google Scholar]
  17. Jones D. A., Abbassi O., McIntire L. V., McEver R. P., Smith C. W. P-selectin mediates neutrophil rolling on histamine-stimulated endothelial cells. Biophys J. 1993 Oct;65(4):1560–1569. doi: 10.1016/S0006-3495(93)81195-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jutila M. A., Kishimoto T. K., Finken M. Low-dose chymotrypsin treatment inhibits neutrophil migration into sites of inflammation in vivo: effects on Mac-1 and MEL-14 adhesion protein expression and function. Cell Immunol. 1991 Jan;132(1):201–214. doi: 10.1016/0008-8749(91)90019-8. [DOI] [PubMed] [Google Scholar]
  19. Kaplanski G., Farnarier C., Tissot O., Pierres A., Benoliel A. M., Alessi M. C., Kaplanski S., Bongrand P. Granulocyte-endothelium initial adhesion. Analysis of transient binding events mediated by E-selectin in a laminar shear flow. Biophys J. 1993 Jun;64(6):1922–1933. doi: 10.1016/S0006-3495(93)81563-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kishimoto T. K., Jutila M. A., Butcher E. C. Identification of a human peripheral lymph node homing receptor: a rapidly down-regulated adhesion molecule. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2244–2248. doi: 10.1073/pnas.87.6.2244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kubes P., Ibbotson G., Russell J., Wallace J. L., Granger D. N. Role of platelet-activating factor in ischemia/reperfusion-induced leukocyte adherence. Am J Physiol. 1990 Aug;259(2 Pt 1):G300–G305. doi: 10.1152/ajpgi.1990.259.2.G300. [DOI] [PubMed] [Google Scholar]
  22. Kuypers T. W., Koenderman L., Weening R. S., Verhoeven A. J., Roos D. Continuous cell activation is necessary for stable interaction of complement receptor type 3 with its counter-structure in the aggregation response of human neutrophils. Eur J Immunol. 1990 Mar;20(3):501–508. doi: 10.1002/eji.1830200307. [DOI] [PubMed] [Google Scholar]
  23. Landis R. C., Bennett R. I., Hogg N. A novel LFA-1 activation epitope maps to the I domain. J Cell Biol. 1993 Mar;120(6):1519–1527. doi: 10.1083/jcb.120.6.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lawrence M. B., Bainton D. F., Springer T. A. Neutrophil tethering to and rolling on E-selectin are separable by requirement for L-selectin. Immunity. 1994 May;1(2):137–145. doi: 10.1016/1074-7613(94)90107-4. [DOI] [PubMed] [Google Scholar]
  25. Lawrence M. B., Berg E. L., Butcher E. C., Springer T. A. Rolling of lymphocytes and neutrophils on peripheral node addressin and subsequent arrest on ICAM-1 in shear flow. Eur J Immunol. 1995 Apr;25(4):1025–1031. doi: 10.1002/eji.1830250425. [DOI] [PubMed] [Google Scholar]
  26. Lawrence M. B., Smith C. W., Eskin S. G., McIntire L. V. Effect of venous shear stress on CD18-mediated neutrophil adhesion to cultured endothelium. Blood. 1990 Jan 1;75(1):227–237. [PubMed] [Google Scholar]
  27. Lawrence M. B., Springer T. A. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell. 1991 May 31;65(5):859–873. doi: 10.1016/0092-8674(91)90393-d. [DOI] [PubMed] [Google Scholar]
  28. Lawrence M. B., Springer T. A. Neutrophils roll on E-selectin. J Immunol. 1993 Dec 1;151(11):6338–6346. [PubMed] [Google Scholar]
  29. Ley K., Gaehtgens P., Fennie C., Singer M. S., Lasky L. A., Rosen S. D. Lectin-like cell adhesion molecule 1 mediates leukocyte rolling in mesenteric venules in vivo. Blood. 1991 Jun 15;77(12):2553–2555. [PubMed] [Google Scholar]
  30. Picker L. J., Warnock R. A., Burns A. R., Doerschuk C. M., Berg E. L., Butcher E. C. The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell. 1991 Sep 6;66(5):921–933. doi: 10.1016/0092-8674(91)90438-5. [DOI] [PubMed] [Google Scholar]
  31. Rochon Y. P., Frojmovic M. M. Dynamics of human neutrophil aggregation evaluated by flow cytometry. J Leukoc Biol. 1991 Nov;50(5):434–443. doi: 10.1002/jlb.50.5.434. [DOI] [PubMed] [Google Scholar]
  32. Rothlein R., Springer T. A. The requirement for lymphocyte function-associated antigen 1 in homotypic leukocyte adhesion stimulated by phorbol ester. J Exp Med. 1986 May 1;163(5):1132–1149. doi: 10.1084/jem.163.5.1132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Simon S. I., Burns A. R., Taylor A. D., Gopalan P. K., Lynam E. B., Sklar L. A., Smith C. W. L-selectin (CD62L) cross-linking signals neutrophil adhesive functions via the Mac-1 (CD11b/CD18) beta 2-integrin. J Immunol. 1995 Aug 1;155(3):1502–1514. [PubMed] [Google Scholar]
  34. Simon S. I., Chambers J. D., Butcher E., Sklar L. A. Neutrophil aggregation is beta 2-integrin- and L-selectin-dependent in blood and isolated cells. J Immunol. 1992 Oct 15;149(8):2765–2771. [PubMed] [Google Scholar]
  35. Simon S. I., Chambers J. D., Sklar L. A. Flow cytometric analysis and modeling of cell-cell adhesive interactions: the neutrophil as a model. J Cell Biol. 1990 Dec;111(6 Pt 1):2747–2756. doi: 10.1083/jcb.111.6.2747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Simon S. I., Rochon Y. P., Lynam E. B., Smith C. W., Anderson D. C., Sklar L. A. Beta 2-integrin and L-selectin are obligatory receptors in neutrophil aggregation. Blood. 1993 Aug 15;82(4):1097–1106. [PubMed] [Google Scholar]
  37. Smith C. W., Kishimoto T. K., Abbassi O., Hughes B., Rothlein R., McIntire L. V., Butcher E., Anderson D. C., Abbass O. Chemotactic factors regulate lectin adhesion molecule 1 (LECAM-1)-dependent neutrophil adhesion to cytokine-stimulated endothelial cells in vitro. J Clin Invest. 1991 Feb;87(2):609–618. doi: 10.1172/JCI115037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith C. W., Marlin S. D., Rothlein R., Toman C., Anderson D. C. Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J Clin Invest. 1989 Jun;83(6):2008–2017. doi: 10.1172/JCI114111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Spertini O., Luscinskas F. W., Kansas G. S., Munro J. M., Griffin J. D., Gimbrone M. A., Jr, Tedder T. F. Leukocyte adhesion molecule-1 (LAM-1, L-selectin) interacts with an inducible endothelial cell ligand to support leukocyte adhesion. J Immunol. 1991 Oct 15;147(8):2565–2573. [PubMed] [Google Scholar]
  40. Springer T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994 Jan 28;76(2):301–314. doi: 10.1016/0092-8674(94)90337-9. [DOI] [PubMed] [Google Scholar]
  41. Tees D. F., Coenen O., Goldsmith H. L. Interaction forces between red cells agglutinated by antibody. IV. Time and force dependence of break-up. Biophys J. 1993 Sep;65(3):1318–1334. doi: 10.1016/S0006-3495(93)81180-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tha S. P., Shuster J., Goldsmith H. L. Interaction forces between red cells agglutinated by antibody. II. Measurement of hydrodynamic force of breakup. Biophys J. 1986 Dec;50(6):1117–1126. doi: 10.1016/S0006-3495(86)83556-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zimmerman G. A., Prescott S. M., McIntyre T. M. Endothelial cell interactions with granulocytes: tethering and signaling molecules. Immunol Today. 1992 Mar;13(3):93–100. doi: 10.1016/0167-5699(92)90149-2. [DOI] [PubMed] [Google Scholar]
  44. von Andrian U. H., Chambers J. D., Berg E. L., Michie S. A., Brown D. A., Karolak D., Ramezani L., Berger E. M., Arfors K. E., Butcher E. C. L-selectin mediates neutrophil rolling in inflamed venules through sialyl LewisX-dependent and -independent recognition pathways. Blood. 1993 Jul 1;82(1):182–191. [PubMed] [Google Scholar]
  45. von Andrian U. H., Chambers J. D., McEvoy L. M., Bargatze R. F., Arfors K. E., Butcher E. C. Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte beta 2 integrins in vivo. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7538–7542. doi: 10.1073/pnas.88.17.7538. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES