Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Oct;69(4):1203–1217. doi: 10.1016/S0006-3495(95)79995-7

A bifurcation analysis of neuronal subthreshold oscillations.

J A White 1, T Budde 1, A R Kay 1
PMCID: PMC1236352  PMID: 8534792

Abstract

The conditions under which a noninactivating sodium current and either a potassium current or an inwardly rectifying cation current can generate subthreshold oscillations were analyzed using nonlinear dynamical techniques applied to a neuronal model consisting of two differential equations. Mathematical descriptions of the membrane currents were derived using voltage-clamp data collected from entorhinal cortical neurons. A bifurcation analysis was performed using applied current as the control parameter to map the range of magnitudes of the sodium, potassium/cation, and leakage conductances over which subthreshold oscillations exist. The threshold of the potassium/cation current was an important determinant of the robustness of oscillatory behavior. The activation time constant of the potassium/cation current largely determined the frequency range of emergent oscillations. This result implicates the slow inward rectifier or an as yet undescribed slow outward current in entorhinal cortical oscillations; the latter explanation, while more speculative, is more consistent with the pharmacological properties of subthreshold oscillations and gives oscillations over a larger current range. The shallowness of the sodium activation curve confined emergent oscillations to rise gradually rather than abruptly and extended the current range over which the model oscillated.

Full text

PDF
1203

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso A., Klink R. Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. J Neurophysiol. 1993 Jul;70(1):128–143. doi: 10.1152/jn.1993.70.1.128. [DOI] [PubMed] [Google Scholar]
  2. Alonso A., Llinás R. R. Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature. 1989 Nov 9;342(6246):175–177. doi: 10.1038/342175a0. [DOI] [PubMed] [Google Scholar]
  3. Bland B. H., Colom L. V. Extrinsic and intrinsic properties underlying oscillation and synchrony in limbic cortex. Prog Neurobiol. 1993 Aug;41(2):157–208. doi: 10.1016/0301-0082(93)90007-f. [DOI] [PubMed] [Google Scholar]
  4. Budde T., White J. A., Kay A. R. Hyperpolarization-activated Na(+)-K+ current (Ih) in neocortical neurons is blocked by external proteolysis and internal TEA. J Neurophysiol. 1994 Dec;72(6):2737–2742. doi: 10.1152/jn.1994.72.6.2737. [DOI] [PubMed] [Google Scholar]
  5. Christie B. R., Abraham W. C. Priming of associative long-term depression in the dentate gyrus by theta frequency synaptic activity. Neuron. 1992 Jul;9(1):79–84. doi: 10.1016/0896-6273(92)90222-y. [DOI] [PubMed] [Google Scholar]
  6. Eder C., Ficker E., Gündel J., Heinemann U. Outward Currents in Rat Entorhinal Cortex Stellate Cells Studied with Conventional and Perforated Patch Recordings. Eur J Neurosci. 1991;3(12):1271–1280. doi: 10.1111/j.1460-9568.1991.tb00060.x. [DOI] [PubMed] [Google Scholar]
  7. Klink R., Alonso A. Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. J Neurophysiol. 1993 Jul;70(1):144–157. doi: 10.1152/jn.1993.70.1.144. [DOI] [PubMed] [Google Scholar]
  8. Krinskii V. I., Kokoz Iu M. Analiz uravenenii vozbudimykh membran. I. Svedenie uravenii Khodzhkina-Khaksli k sisteme vtorogo poriadka. Biofizika. 1973 May-Jun;18(3):506–511. [PubMed] [Google Scholar]
  9. Larson J., Lynch G. Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events. Science. 1986 May 23;232(4753):985–988. doi: 10.1126/science.3704635. [DOI] [PubMed] [Google Scholar]
  10. Morris C., Lecar H. Voltage oscillations in the barnacle giant muscle fiber. Biophys J. 1981 Jul;35(1):193–213. doi: 10.1016/S0006-3495(81)84782-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Plant R. E., Kim M. Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxley equations. Biophys J. 1976 Mar;16(3):227–244. doi: 10.1016/S0006-3495(76)85683-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Singer W. Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol. 1993;55:349–374. doi: 10.1146/annurev.ph.55.030193.002025. [DOI] [PubMed] [Google Scholar]
  13. Vanderwolf C. H. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol. 1969 Apr;26(4):407–418. doi: 10.1016/0013-4694(69)90092-3. [DOI] [PubMed] [Google Scholar]
  14. Wang X. J. Ionic basis for intrinsic 40 Hz neuronal oscillations. Neuroreport. 1993 Dec 13;5(3):221–224. doi: 10.1097/00001756-199312000-00008. [DOI] [PubMed] [Google Scholar]
  15. White J. A., Alonso A., Kay A. R. A heart-like Na+ current in the medial entorhinal cortex. Neuron. 1993 Dec;11(6):1037–1047. doi: 10.1016/0896-6273(93)90217-f. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES